Hydrodynamics Around Cylindrical Structures


Book Description

This book discusses the subject of wave/current flow around a cylinder, the forces induced on the cylinder by the flow, and the vibration pattern of slender structures in a marine environment.The primary aim of the book is to describe the flow pattern and the resulting load which develops when waves or current meet a cylinder. Attention is paid to the special case of a circular cylinder. The development in the forces is related to the various flow patterns and is discussed in detail. Regular as well as irregular waves are considered, and special cases like wall proximities (pipelines) are also investigated.The book is intended for MSc students with some experience in basic fluid mechanics and for PhD students.




A Critical Review of the Intrinsic Nature of Vortex Induced Vibrations


Book Description

This is a concise and comprehensive review of the progress made during the past two decades on vortex induced vibration (VIV) of mostly circular cylindrical structures subjected to steady uniform flow. The critical elements of the evolution of the ideas, theoretical insights, experimental methods, and numerical models are traced systematically; the strengths and weaknesses of the current state of the understanding of the complex fluid/structure interaction are discussed in some detail. Finally, some suggestions are made for further research on VIV. The organization of the paper is given at the end of the next section.




Hydrodynamics VI: Theory and Applications


Book Description

The International Conference on Hydrodynamics is an increasingly important event at which academics, researchers and practitioners can exchange new ideas and their research findings. This volume contains papers from the 2004 conference covering a wide range of subjects within hydrodynamics, including traditional engineering, architectural and mecha




Particle Image Velocimetry


Book Description

Particle image velocimetry, or PIV, refers to a class of methods used in experimental fluid mechanics to determine instantaneous fields of the vector velocity by measuring the displacements of numerous fine particles that accurately follow the motion of the fluid. Although the concept of measuring particle displacements is simple in essence, the factors that need to be addressed to design and implement PIV systems that achieve reliable, accurate, and fast measurements and to interpret the results are surprisingly numerous. The aim of this book is to analyze and explain them comprehensively.




Computational Fluid Dynamics 2002


Book Description

We are pleased to present the Proceedings of the Second International Conference on Computational Fluid Dynamics held at the University of Sydney, Australia, from July 15 to 19, 2002. The conference was a productive meeting of scientists, mathematicians and engineers involved in the computation of fluid flow. Keynote lectures were presented in the areas of optimisation, algorithms, turbulence and bio-fluid mechanics. Two hundred and fifty abstracts from many countries were received for con sideration. The executive committee, consisting of A. Lerat, M. Napolitano, J.J. Chattot, N. Satofuka and myself, were responsible for the selection of papers. Each of the members had a separate subcommittee to carry out the evaluation. One hundred and seventy papers were selected of which one hundred and fifty two were presented at the conference. All papers that appear in the proceedings have been peer reviewed by a panel of experts (with a minimum of two for every paper) before publication. The conference was attended by 160 delegates with a minimum of late with drawals. The informal and friendly atmosphere provided by the university sur roundings was highly appreciated, and the technical aspects of the conference were stimulating. It is appropriate here to thank Alain Lerat, the retiring secretary of the international scientific committee of the conference. We also wish to welcome J. J. Chattot who is the incoming secretary.




Fluid Vortices


Book Description

Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.







Turbulent Shear Flows 8


Book Description

This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.




Flow Around Circular Cylinders


Book Description

This text offers an authoritative compilation of experimental data, theoretical models, and computer simulations which will provide the reader with a comprehensive survey of research work on the phenomenon of flow around circular cylinders.




Fluid-Structure Interactions


Book Description

Structures in contact with fluid flow, whether natural or man-made, are inevitably subject to flow-induced forces and flow-induced vibration: from plant leaves to traffic signs and to more substantial structures, such as bridge decks and heat exchanger tubes. Under certain conditions the vibration may be self-excited, and it is usually referred to as an instability. These instabilities and, more specifically, the conditions under which they arise are of great importance to designers and operators of the systems concerned because of the significant potential to cause damage in the short term. Such flow-induced instabilities are the subject of this book. In particular, the flow-induced instabilities treated in this book are associated with cross-flow, that is, flow normal to the long axis of the structure. The book treats a specific set of problems that are fundamentally and technologically important: galloping, vortex-shedding oscillations under lock-in conditions, and rain-and-wind-induced vibrations, among others. The emphasis throughout is on providing a physical description of the phenomena that is as clear and up-to-date as possible.