Experimental Design and Process Optimization


Book Description

Experimental Design and Process Optimization delves deep into the design of experiments (DOE). The book includes Central Composite Rotational Design (CCRD), fractional factorial, and Plackett and Burman designs as a means to solve challenges in research and development as well as a tool for the improvement of the processes already implemented. Appr




Experimental Design and Process Optimization


Book Description

Experimental Design and Process Optimization delves deep into the design of experiments (DOE). The book includes Central Composite Rotational Design (CCRD), fractional factorial, and Plackett and Burman designs as a means to solve challenges in research and development as well as a tool for the improvement of the processes already implemented. Appropriate strategies for 2 to 32 factors are covered in detail in the book. The book covers the essentials of statistical science to assist readers in understanding and applying the concepts presented. It also presents numerous examples of applications using this methodology. The authors are not only experts in the field but also have significant practical experience. This allows them to discuss the application of the theoretical aspects discussed through various real-world case studies.




Process Optimization


Book Description

This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.




Industrial Design of Experiments


Book Description

This textbook provides the tools, techniques, and industry examples needed for the successful implementation of design of experiments (DoE) in engineering and manufacturing applications. It contains a high-level engineering analysis of key issues in the design, development, and successful analysis of industrial DoE, focusing on the design aspect of the experiment and then on interpreting the results. Statistical analysis is shown without formula derivation, and readers are directed as to the meaning of each term in the statistical analysis. Industrial Design of Experiments: A Case Study Approach for Design and Process Optimization is designed for graduate-level DoE, engineering design, and general statistical courses, as well as professional education and certification classes. Practicing engineers and managers working in multidisciplinary product development will find it to be an invaluable reference that provides all the information needed to accomplish a successful DoE.




Experiments


Book Description

Praise for the First Edition: "If you . . . want an up-to-date, definitive reference written by authors who have contributed much to this field, then this book is an essential addition to your library." —Journal of the American Statistical Association Fully updated to reflect the major progress in the use of statistically designed experiments for product and process improvement, Experiments, Second Edition introduces some of the newest discoveries—and sheds further light on existing ones—on the design and analysis of experiments and their applications in system optimization, robustness, and treatment comparison. Maintaining the same easy-to-follow style as the previous edition while also including modern updates, this book continues to present a new and integrated system of experimental design and analysis that can be applied across various fields of research including engineering, medicine, and the physical sciences. The authors modernize accepted methodologies while refining many cutting-edge topics including robust parameter design, reliability improvement, analysis of non-normal data, analysis of experiments with complex aliasing, multilevel designs, minimum aberration designs, and orthogonal arrays. Along with a new chapter that focuses on regression analysis, the Second Edition features expanded and new coverage of additional topics, including: Expected mean squares and sample size determination One-way and two-way ANOVA with random effects Split-plot designs ANOVA treatment of factorial effects Response surface modeling for related factors Drawing on examples from their combined years of working with industrial clients, the authors present many cutting-edge topics in a single, easily accessible source. Extensive case studies, including goals, data, and experimental designs, are also included, and the book's data sets can be found on a related FTP site, along with additional supplemental material. Chapter summaries provide a succinct outline of discussed methods, and extensive appendices direct readers to resources for further study. Experiments, Second Edition is an excellent book for design of experiments courses at the upper-undergraduate and graduate levels. It is also a valuable resource for practicing engineers and statisticians.




Response Surface Methodology


Book Description

Praise for the Third Edition: “This new third edition has been substantially rewritten and updated with new topics and material, new examples and exercises, and to more fully illustrate modern applications of RSM.” - Zentralblatt Math Featuring a substantial revision, the Fourth Edition of Response Surface Methodology: Process and Product Optimization Using Designed Experiments presents updated coverage on the underlying theory and applications of response surface methodology (RSM). Providing the assumptions and conditions necessary to successfully apply RSM in modern applications, the new edition covers classical and modern response surface designs in order to present a clear connection between the designs and analyses in RSM. With multiple revised sections with new topics and expanded coverage, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition includes: Many updates on topics such as optimal designs, optimization techniques, robust parameter design, methods for design evaluation, computer-generated designs, multiple response optimization, and non-normal responses Additional coverage on topics such as experiments with computer models, definitive screening designs, and data measured with error Expanded integration of examples and experiments, which present up-to-date software applications, such as JMP®, SAS, and Design-Expert®, throughout An extensive references section to help readers stay up-to-date with leading research in the field of RSM An ideal textbook for upper-undergraduate and graduate-level courses in statistics, engineering, and chemical/physical sciences, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition is also a useful reference for applied statisticians and engineers in disciplines such as quality, process, and chemistry.




Manufacturing Process Design and Optimization


Book Description

This work presents the concepts of process design, problem identification, problem-solving and process optimization. It provides the basic tools needed to increase the consistency and profitability of manufacturing options, stressing the paradigms of improvement and emphasizing the hands-on use of tools furnished. The book introduces basic experimental design principles and avoids complicated statistical formulae.




Practical Guide to Experimental Design


Book Description

Over the last decade, Design of Experiments (DOE) has become established as a prime analytical and forecasting method with a vital role to play in product and process improvement. Now Practical Guide to Experimental Design lets you put this high-level statistical technique to work in your field, whether you are in the manufacturing or services sector. This accessible book equips you with all of the basic technical and managerial skills you need to develop, execute, and evaluate designed experiments effectively. You will develop a solid grounding in the statistical underpinnings of DOE, including distributions, analysis of variance, and more. You will also gain a firm grasp of full and fractional factorial techniques, the use of DOE in fault isolation and failure analysis, and the application of individual DOE methods within an integrated system. Each procedure is clearly illustrated one step at a time with the help of simplified notation and easy-to-understand spreadsheets. The book's real-world approach is reinforced throughout by case studies, examples, and exercises taken from a broad cross section of business applications. Practical Guide to Experimental Design is a valuable competitive asset for engineers, scientists, and decision-makers in many industries, as well as an important resource for researchers and advanced students. This hands-on guide offers complete, down-to-earth coverage of Design of Experiments (DOE) basics, providing you with the technical and managerial tools you need to put this powerful technique into action to help you achieve your quality improvement objectives. Using a clear, step-by-step approach, Practical Guide to Experimental Design shows you how to develop, perform, and analyze designed experiments. The book features: * Accessible coverage of statistical concepts, including data acquisition, reporting of results, sampling and other distributions, and more * A complete range of analytical procedures - analysis of variance, full and fractional factorial DOE, and the role of DOE in fault isolation and failure analysis * In-depth case studies, examples, and exercises covering a range of different uses of DOE * Broad applications across manufacturing, service, administrative, and other business sectors No matter what your field, Practical Guide to Experimental Design provides you with the "on-the-ground" assistance necessary to transform DOE theory into practice - the ideal guide for engineers, scientists, researchers, and advanced students.




Design and Analysis of Experiments with R


Book Description

Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data, and illustrates the interpretation of results. Drawing on his many years of working in the pharmaceutical, agricultural, industrial chemicals, and machinery industries, the author teaches students how to: Make an appropriate design choice based on the objectives of a research project Create a design and perform an experiment Interpret the results of computer data analysis The book emphasizes the connection among the experimental units, the way treatments are randomized to experimental units, and the proper error term for data analysis. R code is used to create and analyze all the example experiments. The code examples from the text are available for download on the author’s website, enabling students to duplicate all the designs and data analysis. Intended for a one-semester or two-quarter course on experimental design, this text covers classical ideas in experimental design as well as the latest research topics. It gives students practical guidance on using R to analyze experimental data.




Pharmaceutical Experimental Design


Book Description

This useful reference describes the statistical planning and design of pharmaceutical experiments, covering all stages in the development process-including preformulation, formulation, process study and optimization, scale-up, and robust process and formulation development.Shows how to overcome pharmaceutical, technological, and economic constraint