Experimental evaluation of stress concentration and intensity factors


Book Description

Experiments on fracture of materials are made for various purposes. Of primary importance are those through which criteria predicting material failure by deformation and/or fracture are investigated. Since the demands of engineering application always precede the development of theories, there is another kind of experiment where conditions under which a particular material can fail are simulated as closely as possible to the operational situation but in a simplified and standardized form. In this way, many of the parameters corresponding to fracture such as toughness, Charpy values, crack opening distance (COD), etc. are measured. Obviously, a sound knowledge of the physical theories governing material failure is necessary as the quantity of interest can seldom be evaluated in a direct manner. Critical stress intensity factors and critical energy release rates are examples. Standard test of materials should be distinguished from basic experi ments. They are performed to provide routine information on materials responding to certain conditions of loading or environment. The tension test with or without a crack is among one of the most widely used tests. Because they affect the results, with size and shape of the specimen, the rate of loading, temperature and crack configuration are standardized to enable comparison and reproducibility of results. The American Society for Testing Materials (ASTM) provides a great deal of information on recommended procedures and methods of testing. The objective is to standardize specifications for materials and definition of technical terms.




Fracture Mechanics Criteria and Applications


Book Description

It is difficult to do justice to fracture mechanics in a textbook, for the subject encompasses so many disciplines. A general survey of the field would serve no purpose other than give a collection of references. The present book by Professor E. E. Gdoutos is refreshing because it does not fall into the esoteric tradition of outlining equations and results. Basic ideas and underlying principles are clearly explained as to how they are used in application. The presentations are concise and each topic can be understood by advanced undergraduates in material science and continuum mechanics. The book is highly recommended not only as a text in fracture mechanics but also as a reference to those interested in the general aspects of failure analysis. In addition to providing an in-depth review of the analytical methods for evaluating the fundamental quantities used in linear elastic fracture mechanics, various criteria are discussed re:O. ecting their limitations and applications. Par ticular emphases are given to predicting crack initiation, subcritical growth and the onset of rapid fracture from a single criterion. Those models in which it is assumed that the crack extends from tip to tip rely on the specific surface energy concept. The differences in the global and energy states before and after crack extension were associated with the energy required to create a unit area of crack surface. Applications were limited by the requirement of self-similar crack growth.




Current Advances in Mechanical Design and Production VII


Book Description

The International Conference on Mechanical Design and Production has over the years established itself as an excellent forum for the exchange of ideas in these established fields. The first of these conferences was held in 1979. The seventh, and most recent, conference in the series was held in Cairo during February 15-17, 2000. International engineers and scientists gathered to exchange experiences and highlight the state-of-the-art research in the fields of mechanical design and production. In addition a heavy emphasis was placed on the issue of technology transfer. Over 100 papers were accepted for presentation at the conference. Current Advances in Mechanical Design & Production VII does not, however, attempt to publish the complete work presented but instead offers a sample that represents the quality and breadth of both the work and the conference. Ten invited papers and 54 ordinary papers have been selected for inclusion in these proceedings. They cover a range of basic and applied topics that can be classified into six main categories: System Dynamics, Solid Mechanics, Material Science, Manufacturing Processes, Design and Tribology, and Industrial Engineering and its Applications.




Fracture Mechanics


Book Description

This book discusses the basic principles and traditional applications of fracture mechanics, as well as the cutting-edge research in the field over the last three decades in current topics like composites, thin films, nanoindentation, and cementitious materials. Experimental methods play a major role in the study of fracture mechanics problems and are used for the determination of the major fracture mechanics quantities such as stress intensity factors, crack tip opening displacements, strain energy release rates, crack paths, crack velocities in static and dynamic problems. These methods include electrical resistance strain gauges, photoelasticity, interferometry techniques, geometric and interferometry moiré, and the optical method of caustics. Furthermore, numerical methods are often used for the determination of fracture mechanics parameters. They include finite and boundary element methods, Green’s function and weight functions, boundary collocation, alternating methods, and integral transforms continuous dislocations. This third edition of the book covers the basic principles and traditional applications, as well as the latest developments of fracture mechanics. Featuring two new chapters and 30 more example problems, it presents a comprehensive overview of fracture mechanics, and includes numerous examples and unsolved problems. This book is suitable for teaching fracture mechanics courses at the undergraduate and graduate levels. A “solutions manual” is available for course instructors upon request.




Experimental Mechanics


Book Description

The book presents in a clear, simple, straightforward, novel and unified manner the most used methods of experimental mechanics of solids for the determination of displacements, strains and stresses. Emphasis is given on the principles of operation of the various methods, not in their applications to engineering problems. The book is divided into sixteen chapters which include strain gages, basic optics, geometric and interferometric moiré, optical methods (photoelasticity, interferometry, holography, caustics, speckle methods, digital image correlation), thermoelastic stress analysis, indentation, optical fibers, nondestructive testing, and residual stresses. The book will be used not only as a learning tool, but as a basis on which the researcher, the engineer, the experimentalist, the student can develop their new own ideas to promote research in experimental mechanics of solids.




Fracture, Fatigue, Failure and Damage Evolution, Volume 3


Book Description

Fracture, Fatigue, Failure and Damage Evolution, Volume 3 of the Proceedings of the 2022 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the third volume of six from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Novel Experimental Methods Extreme Environments Interfacial Fracture Integration of Models & Experiments Mechanics of Energy & Energetic Materials Integration of Models & Experiments In Situ Techniques for Fatigue & Fracture Microscale & Microstructural Effects on Mechanical Behavior




Interference-optical Methods of Solid Mechanics


Book Description

This reference tutorial contains modern experimental approaches to analysis of strain-stress distribution based on interference-optical methods of registration of strain or displacement fields, including coherent-optical techniques (holographic interferometry, speckle photography, electronic digital speckle interferometry techniques) and photoelastic methods as well as the shadow optical method of caustic. The book describes the theory, efficient scope of application in the every-day practice and the problems of further development of these techniques. Much attention is paid to new and promising advanced developments in the field of observation and computational methods for study of residual stress, determination of fracture mechanics parameters and material deformation characteristics. The content corresponds to the course of lectures delivered by the author at the N.E. Bauman Moscow State Technical University. It is intended for technical university students, research engineers and postgraduate students who are doing analysis of strain-stress state and strength of structural elements.




Constitutive Relation in High/Very High Strain Rates


Book Description

The IUTAM Symposium on Constitutive Relation in High/Very High Strain Rates (CRHVHSR) was held October 16 - 19, 1995, at Seminar House, Science University of Tokyo, under the sponsorship of IUTAM, Japan Society for the Promotion of Science, The Commemorative Association for the Japan World Exposition (1970), Inoue Foundation for Science, The Japan Society for Aeronautical and Space Sciences, and Science University of Tokyo. The proposal to hold the symposium was accepted by the General Assembly of IUT AM held in Haifa, Israel, in August 1992, and the scientists mentioned below were appointed by the Bureau of IUTAM to serve as members of the Scientific Committee. The main object of the symposium was to make a general survey of recent developments in the research of constitutive relations in high and very high strain rates and related problems in high velocity solid mechanics, and to explore further new ideas for dealing with unresolved problems of a fundamental nature as well as of practical importance. The subjects covered theoretical, experimental, and numerical fields in the above-mentioned problems in solids, covering metals, polymers, ceramics, and composites. Emphasis was given to the following fields: 1. Material characterization of solids in high velocity deformation, experimental techniques, typical data obtained by these techniques, modeling, and constitutive relations 2. Strain rate dependent elasto-visco-plastic stress waves 3. Crack initiation, propagation, and dynamic fracture toughness 4. Dynamic stress concentration 5. Structural dynamics in impact and constitutive relations of solids 6.




Dynamic fracture


Book Description

From time to time the International Journal of Fracture has presented matters thought to be of special interest to its readers. In previous special issues (December 1980 and April 1981), Dr H.W. Liu as Guest Editor presented a series of review papers dealing with fatigue processes and characteristics in metals and non-metals. Continuing this policy, which is consistent with our stated objectives, a second review dealing with time depen dence in the fracture process, including the effect of material inertia but essentially excluding very strong shock effects in solids, has been assembled under the generic term "dynamic fracture". We hope that the ensuing state-of-the-art review will yield an instructive and timely product which readers will find useful. To assist us in presenting this subject, we have prevailed upon a well-known worker in dynamic fracture, Dr W.G. Knauss, Professor of Aeronautics and Applied Mechanics, California Institute of Technology to act as Guest Editor for this special double issue. On behalf of the editors and publisher, I wish to express our indebtedness to Professor Knauss and his invited authors for undertaking this special effort.




Dynamic Failure of Materials


Book Description

The rapid pace of current developments in the theoretical, analytical, numerical and experimental fields of dynamic failure of materials called for an international seminar of workshop style aimed at improving the finding and understanding of solutions to the basic physical processes involved in dynamic failure. The Vienna Seminar DFM-l was held at the Technical University Vienna in the historic administration building in the city center under the auspices of the university. More than 30 international experts from all over the world followed the invitation to participate at this seminar. High in the list of priorities was the common desire for ample time for discussions after each technical presenta tion, a fact and a chance frequently made overextensive use of during the seminar. Thus, opportunity was given to the seminar participants to present and expose ideas and results of their original research work, either terminated, ongoing, proposed or conceived and intended, to an international forum of experts for critical discussions, evaluation and appraisal. The technical program included dynamic failure of polymers and steel, numerical modelling of fracture processes, experimental techniques and analytical/numerical investigation of crack/wave interaction problems. The scope of the contributions stretched from implementation of advanced mathematical techniques in the theoretical developments to most direct applications in various fields of engineering practice. Papers published in this volume represent revised, updated and expanded versions of the seminar contributions.