Experimental Studies of the Heat Transfer to Rbcc Rocket Nozzles for Cfd Application to Design Methodologies


Book Description

Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.Santoro, Robert J. and Pal, SibtoshMarshall Space Flight CenterHEAT TRANSFER; ROCKET NOZZLES; COMPUTATIONAL FLUID DYNAMICS; LIQUID COOLING; HYDROGEN; OXYGEN; PROPELLANTS; HEAT FLUX; TEMPERATURE PROFILES; WALL TEMPERATURE




Journal of Thermophysics and Heat Transfer


Book Description

This journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. It publishes papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include conductive, convective, and radiative modes alone or in combination and the effects of the environment.
















Hypersonic Airbreathing Propulsion


Book Description

An almost entirely self-contained engineering textbook primarily for use in undergraduate and graduate courses in airbreathing propulsion. It provides a broad and basic introduction to the elements needed to work in the field as it develops and grows. Homework problems are provided for almost every individual subject. An extensive array of PC-based user-friendly computer programs is provided in order to facilitate repetitious and/or complex calculations. Annotation copyright by Book News, Inc., Portland, OR




The Finding Guide to AIAA Meeting Papers


Book Description







Facing the Heat Barrier


Book Description

This volume from The NASA History Series presents an overview of the science of hypersonics, the study of flight at speeds at which the physics of flows is dominated by aerodynamic heating. The survey begins during the years immediately following World War II, with the first steps in hypersonic research: the development of missile nose cones and the X-15; the earliest concepts of hypersonic propulsion; and the origin of the scramjet engine. Next, it addresses the re-entry problem, which came to the forefront during the mid-1950s, showing how work in this area supported the manned space program and contributed to the development of the orbital shuttle. Subsequent chapters explore the fading of scramjet studies and the rise of the National Aerospace Plane (NASP) program of 1985–95, which sought to lay groundwork for single-stage vehicles. The program's ultimate shortcomings — in terms of aerodynamics, propulsion, and materials — are discussed, and the book concludes with a look at hypersonics in the post-NASP era, including the development of the X-33 and X-34 launch vehicles, further uses for scramjets, and advances in fluid mechanics. Clearly, ongoing research in hypersonics has yet to reach its full potential, and readers with an interest in aeronautics and astronautics will find this book a fascinating exploration of the field's history and future.