Experimental Study on High Subsonic Turbulent Flow Incipient Separation


Book Description

For flow over a two-dimensional ramp compression corner case, an experimental investigation to determine the incipient separation was carried out at Mach numbers between 0.55 and 0.9 and Reynolds numbers (based on undisturbed boundary layer thickness) between 350,000 and 690,000. Detailed surface pressure, pitot traversing and oil flow data were obtained for each ramp angle case. Two-dimensionality of the ramp compression corners was verified by the surface oil flow. A major finding of this study is that the incipient separation ramp angle is relatively independent of Mach number and Reynolds number within the range studied. The incipient separation ramp angle was found to be about 22.5 degrees.







Report


Book Description







NASA Technical Paper


Book Description




Heat Transfer in Subsonic Separated Flows


Book Description

This book presents the results of scientific research performed over the past two decades by the authors. The book discusses some issues of separated laminar flows that are of great practical interest for the development of new technologies using microchannel flows, where separation zones can form. Of particular interest is the complex mechanism of flow separation with superimposed high external turbulence. The challenges of finding the optimal location for the cavities and fins on heat exchange surfaces are also considered. This is an important fundamental and practical problem when creating new schemes of efficient heat exchangers in various power plants. A wide class of problems of turbulent flow in tubes with flow separation is considered. These data will be useful in engineering estimates of the thermal–hydraulic efficiency of various heat transfer intensifiers. This book focuses on the analysis of thermal characteristics of separated flows, as well as the possibility of controlling the intensity of heat exchange processes, from the point of view of both their intensification and their suppression.













NASA SP.


Book Description