Explainable Recommendation


Book Description

In recent years, a large number of explainable recommendation approaches have been proposed and applied in real-world systems. This survey provides a comprehensive review of the explainable recommendation research.




Recommender Systems


Book Description




Interpretable Machine Learning


Book Description

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.







Explainable, Interpretable, and Transparent AI Systems


Book Description

Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.




Database Systems for Advanced Applications


Book Description

The three-volume set LNCS 13245, 13246 and 13247 constitutes the proceedings of the 26th International Conference on Database Systems for Advanced Applications, DASFAA 2022, held online, in April 2021. The total of 72 full papers, along with 76 short papers, are presented in this three-volume set was carefully reviewed and selected from 543 submissions. Additionally, 13 industrial papers, 9 demo papers and 2 PhD consortium papers are included. The conference was planned to take place in Hyderabad, India, but it was held virtually due to the COVID-19 pandemic.




Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection


Book Description

This book constitutes the proceedings of the workshops co-located with the 19th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2021, held in Salamanca, Spain, in October 2021. The total of 17 full and 9 short papers presented in this volume were carefully selected from 42 submissions. The papers in this volume stem from the following meetings:Workshop on Character Computing (C2); Workshop on Deep Learning Applications (DeLA); Workshop on Decision Support, Recommendation, and Persuasion in Artificial Intelligence (DeRePAI); Workshop on Multi-agent based Applications for Modern Energy Markets, Smart Grids and Future Power Systems (MASGES); Workshop on Smart Cities and Intelligent Agents (SCIA).




Web Information Systems and Applications


Book Description

This book constitutes the proceedings of the 17th International Conference on Web Information Systems and Applications, WISA 2020, held in Guangzhou, China, in September 2020. The 42 full papers and 16 short papers presented were carefully reviewed and selected from 165 submissions. The papers are grouped in topical sections on world wide web, recommendation, query processing and algorithm, natural language processing, machine learning, graph query, edge computing and data mining, data privacy and security, and blockchain.




Database Systems for Advanced Applications


Book Description

The three-volume set LNCS 12681-12683 constitutes the proceedings of the 26th International Conference on Database Systems for Advanced Applications, DASFAA 2021, held in Taipei, Taiwan, in April 2021. The total of 156 papers presented in this three-volume set was carefully reviewed and selected from 490 submissions. The topic areas for the selected papers include information retrieval, search and recommendation techniques; RDF, knowledge graphs, semantic web, and knowledge management; and spatial, temporal, sequence, and streaming data management, while the dominant keywords are network, recommendation, graph, learning, and model. These topic areas and keywords shed the light on the direction where the research in DASFAA is moving towards. Due to the Corona pandemic this event was held virtually.




Advances in Information Retrieval


Book Description

This two-volume set LNCS 12656 and 12657 constitutes the refereed proceedings of the 43rd European Conference on IR Research, ECIR 2021, held virtually in March/April 2021, due to the COVID-19 pandemic. The 50 full papers presented together with 11 reproducibility papers, 39 short papers, 15 demonstration papers, 12 CLEF lab descriptions papers, 5 doctoral consortium papers, 5 workshop abstracts, and 8 tutorials abstracts were carefully reviewed and selected from 436 submissions. The accepted contributions cover the state of the art in IR: deep learning-based information retrieval techniques, use of entities and knowledge graphs, recommender systems, retrieval methods, information extraction, question answering, topic and prediction models, multimedia retrieval, and much more.