Exploring the Quantum/classical Frontier


Book Description

Exploring the Quantum/Classical Frontier - Recent Advances in Macroscopic Quantum Phenomena







Exploring the Quantum


Book Description

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.




Perspectives Of Mesoscopic Physics: Dedicated To Yoseph Imry's 70th Birthday


Book Description

Professor Yoseph (Joe) Imry, an early initiator of mesoscopic physics, has been among the leaders in this field for several decades. This book contains articles by leading (theoretical and experimental) scientists working in nanoscience and in related fields. Most of the contributions, consisting both reviews of the state of the art and new results, summarize invited talks given at two conferences held in honor of Imry's 70th birthday: the 101st Statistical Mechanics Conference (Rutgers University, May 10-12, 2009), and Perspectives of Mesoscopic Physics (Weizmann Institute of Science, May 31-June 1, 2009). This book covers a broad range of active research in nanoscience, including topics like quantum interference, decoherence, electron correlations, nano superconductors and nano magnets, nonequilibrium and glassy behavior.




Interacting Electrons in Nanostructures


Book Description

The exciting field of nanostructured materials offers many challenging perspectives for fundamental research and technological applications. The combination of quantum mechanics, interaction, phase coherence, and magnetism are important for understanding many physical phenomena in these systems. This book provides an overview of many aspects of interacting electrons in nanostructures, including such interesting topics as quantum dots, quantum wires, molecular electronics, dephasing, spintronics, and nanomechanics. The content reflects the current research in this area and is written by leading experts in the field.







Quantum Computing Demystified: The Next Frontier in Computing


Book Description

Step into the fascinating world of quantum computing with Quantum Computing Demystified: The Next Frontier in Computing. This comprehensive guide takes you on an enlightening journey through the principles of quantum mechanics, the intricacies of quantum bits and gates, and the revolutionary algorithms that promise to transform industries. Whether you're a student, researcher, or tech enthusiast, this book breaks down complex topics into digestible sections, making the future of computing accessible to all. Explore the potential applications, dive into the hardware and software that power quantum systems, and understand the profound implications of this cutting-edge technology. Get ready to uncover the mysteries of the quantum realm and discover how it will shape the future of our digital world.




Molecular Magnets


Book Description

This book provides an overview of the physical phenomena discovered in magnetic molecular materials over the last 20 years. It is written by leading scientists having made the most important contributions to this active area of research. The main topics of this book are the principles of quantum tunneling and quantum coherence of single-molecule magnets (SMMs), phenomena which go beyond the physics of individual molecules, such as the collective behavior of arrays of SMMs, the physics of one-dimensional single–chain magnets and magnetism of SMMs grafted on substrates. The potential applications of these physical phenomena to classical and quantum information, communication technologies, and the emerging fields of molecular spintronics and magnetic refrigeration are stressed. The book is written for graduate students, researchers and non-experts in this field of research.




The Quantum Frontier


Book Description

A thrilling and interesting tale of the past and current scientists and their contributions to the field of quantum physics. Covering everything from the effects, rules, and mathematical expressions encompassing this riveting field. The structured progressive difficulty gives maximum access at all education levels and ages with advanced topics explained simply and a look at what the future might hold.




Quantum-Classical Analogies


Book Description

It is unanimously accepted that the quantum and the classical descriptions of the physical reality are very different, although any quantum process is "mysteriously" transformed through measurement into an observable classical event. Beyond the conceptual differences, quantum and classical physics have a lot in common. And, more important, there are classical and quantum phenomena that are similar although they occur in completely different contexts. For example, the Schrödinger equation has the same mathematical form as the Helmholtz equation, there is an uncertainty relation in optics very similar to that in quantum mechanics, and so on; the list of examples is very long. Quantum-classical analogies have been used in recent years to study many quantum laws or phenomena at the macroscopic scale, to design and simulate mesoscopic devices at the macroscopic scale, to implement quantum computer algorithms with classical means, etc. On the other hand, the new forms of light – localized light, frozen light – seem to have more in common with solid state physics than with classical optics. So these analogies are a valuable tool in the quest to understand quantum phenomena and in the search for new (quantum or classical) applications, especially in the area of quantum devices and computing.