Univalent Functions


Book Description




Topics in Hardy Classes and Univalent Functions


Book Description

These notes are based on lectures given at the University of Virginia over the past twenty years. They may be viewed as a course in function theory for nonspecialists. Chapters 1-6 give the function-theoretic background to Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985. These chapters were written first, and they were origi nally intended to be a part of that book. Half-plane function theory continues to be useful for applications and is a focal point in our account (Chapters 5 and 6). The theory of Hardy and Nevanlinna classes is derived from proper ties of harmonic majorants of subharmonic functions (Chapters 3 and 4). A selfcontained treatment of harmonic and subharmonic functions is included (Chapters 1 and 2). Chapters 7-9 present concepts from the theory of univalent functions and Loewner families leading to proofs of the Bieberbach, Robertson, and Milin conjectures. Their purpose is to make the work of de Branges accessible to students of operator theory. These chapters are by the second author. There is a high degree of independence in the chapters, allowing the material to be used in a variety of ways. For example, Chapters 5-6 can be studied alone by readers familiar with function theory on the unit disk. Chapters 7-9 have been used as the basis for a one-semester topics course.
















Interpolation Theory, Systems Theory and Related Topics


Book Description

This volume is dedicated to Harry Dym, a leading expert in operator theory, on the occasion of his sixtieth birthday. The book opens with an autobiographical sketch, a list of publications and a personal account of I. Gohberg on his collaboration with Harry Dym. The mathematical papers cover Krein space operator theory, Schur analysis and interpolation, several complex variables and Riemann surfaces, matrix theory, system theory, and differential equations and mathematical physics. The book is of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.