Analysis of Failure in Fiber Polymer Laminates


Book Description

Written by Puck's pupil and appointed successor Martin Knops, this book presents Alfred Puck ́s failure model, which, among several other theories, predicts fracture limits best and describes the failure phenomena in FRP most realistically – as confirmed within the "World-wide Failure Exercise". Using Puck ́s model the composite engineer can follow the gradual failure process in a laminate and deduce from the results of the analysis how to improve the laminate design.




Failure Criteria in Fibre Reinforced Polymer Composites


Book Description

Fiber reinforced polymer composites are an extremely broad and versatile class of material.Their high strength coupled with lightweight leads to their use wherever structural efficiency is at a premium. Applications can be found in aircraft, process plants, sporting goods and military equipment. However they are heterogeneous in construction and antisotropic, which makes making strength prediction extremely difficult especially compared to that of a metal. This book brings together the results of a 12year worldwide failure exercise encompassing 19 theories in a single volume. Each contributor describes their own theory and employs it to solve 14 challenging problems. The accuracy of predictions and the performance of the theories are assessed and recommendations made on the uses of the theories in engineering design. All the necessary information is provided for the methodology to be readily employed for validating and benchmarking new theories as they emerge. Brings together 19 failure theories, with many application examples. Compares the leading failure theories with one another and with experimental data Failure to apply these theories could result in potentially unsafe designs or over design.




Strength of Fibrous Composites


Book Description

"Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.




Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites


Book Description

Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites provides detailed information on failure analysis, mechanical and physical properties, structural health monitoring, durability and life prediction, modelling of damage processes of natural fiber, synthetic fibers, and natural/natural, and natural/synthetic fiber hybrid composites. It provides a comprehensive review of both established and promising new technologies currently under development in the emerging area of structural health monitoring in aerospace, construction and automotive structures. In addition, it describes SHM methods and sensors related to specific composites and how advantages and limitations of various sensors and methods can help make informed choices. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.




Mechanics of Fibrous Composites


Book Description

Fibre-reinforced plastic (FRP) composite materials are basically of two types. The first type is short fibres reinforced in a plastic matrix, and the other type continuous (long) fibres reinforced in a plastic matrix. The exact distinction between a short and a continuous fibre is discussed in Chapter 1. Continuous fibre-reinforced composite materials are referred to by many labels: FRP composites, advanced composites, fibrous composites, composite materials or simply composites. These terms are now generally accepted to mean the same type of material, namely, continuous fibre reinforced in plastic. In this book, the term fibrous composites is used to define a continuous fibre reinforced in plastic. Fibrous composites are presently in use for a variety of structural applica tions, and may offer an alternative to conventional metallic materials. The behaviour of fibrous composites subjected to a loading condition is very different from that of a metallic isotropic material. Therefore, 'new' analytical and testing methods are required to analyse a structural element and sections made from layered fibrous composites. There are a number of books written on the subject of composite materials. All of these are excellent in their content and achieve the authors' objectives.




Damage and Failure of Composite Materials


Book Description

Bringing together materials mechanics and modelling, this book provides a complete guide to damage mechanics of composite materials for engineers.




Stress Analysis of Fiber-reinforced Composite Materials


Book Description

Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.




Hybrid Natural Fiber Composites


Book Description

Research on natural fiber composites is an emerging area in the field of polymer science with tremendous growth potential for commercialization. Hybrid Natural Fiber Composites: Material Formulations, Processing, Characterization, Properties, and Engineering Applications provides updated information on all the important classes of natural fibers and their composites that can be used for a broad range of engineering applications. Leading researchers from industry, academia, government, and private research institutions from across the globe have contributed to this highly application-oriented book. The chapters showcase cutting-edge research discussing the current status, key trends, future directions, and opportunities. Focusing on the current state of the art, the authors aim to demonstrate the future potential of these materials in a broad range of demanding engineering applications. This book will act as a one-stop reference resource for academic and industrial researchers working in R&D departments involved in designing composite materials for semi structural engineering applications. - Presents comprehensive information on the properties of hybrid natural fiber composites that demonstrate their ability to improve the hydrophobic nature of natural fiber composites - Reviews recent developments in the research and development of hybrid natural fiber composites in various engineering applications - Focuses on modern technologies and illustrates how hybrid natural fiber composites can be used as alternatives in structural components subjected to severe conditions




Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites


Book Description

This book presents a unified approach to fracture behavior of natural and synthetic fiber-reinforced polymer composites on the basis of fiber orientation, the addition of fillers, characterization, properties and applications. In addition, the book contains an extensive survey of recent improvements in the research and development of fracture analysis of FRP composites that are used to make higher fracture toughness composites in various applications.The FRP composites are an emerging area in polymer science with many structural applications. The rise in materials failure by fracture has forced scientists and researchers to develop new higher strength materials for obtaining higher fracture toughness. Therefore, further knowledge and insight into the different modes of fracture behavior of FRP composites are critical to expanding the range of their application.




Failure Analysis and Fractography of Polymer Composites


Book Description

The growing use of polymer composites is leading to increasing demand for fractographic expertise. Fractography is the study of fracture surface morphologies and it gives an insight into damage and failure mechanisms, underpinning the development of physically-based failure criteria. In composites research it provides a crucial link between predictive models and experimental observations. Finally, it is vital for post-mortem analysis of failed or crashed polymer composite components, the findings of which can be used to optimise future designs.Failure analysis and fractography of polymer composites covers the following topics: methodology and tools for failure analysis; fibre-dominated failures; delamination-dominated failures; fatigue failures; the influence of fibre architecture on failure; types of defect and damage; case studies of failures due to overload and design deficiencies; case studies of failures due to material and manufacturing defects; and case studies of failures due to in-service factors.With its distinguished author, Failure analysis and fractography of polymer composites is a standard reference text for researchers working on damage and failure mechanisms in composites, engineers characterising manufacturing and in-service defects in composite structures, and investigators undertaking post-mortem failure analysis of components. The book is aimed at both academic and industrial users, specifically final year and postgraduate engineering and materials students researching composites and industry designers and engineers in aerospace, civil, marine, power and transport applications. - Examines the study of fracture surface morphologies in uderstanding composite structural behaviour - Discusses composites research and post-modern analysis of failed or crashed polymer composite components - Provides an overview of damage mechanisms, types of defect and failure criteria