Fast Algorithms for Structured Matrices


Book Description

One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.




Fast Reliable Algorithms for Matrices with Structure


Book Description

This book deals with the combined issues of speed and numerical reliability in algorithm development.




High Performance Algorithms for Structured Matrix Problems


Book Description

Comprises 10 contributions that summarize the state of the art in the areas of high performance solutions of structured linear systems and structured eigenvalue and singular-value problems. Topics covered range from parallel solvers for sparse or banded linear systems to parallel computation of eigenvalues and singular values of tridiagonal and bidiagonal matrices. Specific paper topics include: the stable parallel solution of general narrow banded linear systems; efficient algorithms for reducing banded matrices to bidiagonal and tridiagonal form; a numerical comparison of look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems; and parallel CG-methods automatically optimized for PC and workstation clusters. Annotation copyrighted by Book News, Inc., Portland, OR




Structured Matrices in Mathematics, Computer Science, and Engineering II


Book Description

"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.




Computer Mathematics: Proceedings Of The Sixth Asian Symposium (Ascm'03)


Book Description

This volume covers some of the most recent and significant advances in computer mathematics. Researchers, engineers, academics and graduate students interested in doing mathematics using computers will find it good reading as well as a valuable reference.







Structured Matrices in Mathematics, Computer Science, and Engineering I


Book Description

"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.




Structured Matrices


Book Description

Mathematicians from various countries assemble computational techniques that have developed and described over the past two decades to analyze matrices with structure, which are encountered in a wide variety of problems in pure and applied mathematics and in engineering. The 16 studies are on asymptotical spectral properties; algorithm design and analysis; issues specifically relating to structures, algebras, and polynomials; and image processing and differential equations. c. Book News Inc.




Time-Varying Systems and Computations


Book Description

Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular.




System Identification (SYSID '03)


Book Description

The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.