Water Reuse


Book Description

Expanding water reuse-the use of treated wastewater for beneficial purposes including irrigation, industrial uses, and drinking water augmentation-could significantly increase the nation's total available water resources. Water Reuse presents a portfolio of treatment options available to mitigate water quality issues in reclaimed water along with new analysis suggesting that the risk of exposure to certain microbial and chemical contaminants from drinking reclaimed water does not appear to be any higher than the risk experienced in at least some current drinking water treatment systems, and may be orders of magnitude lower. This report recommends adjustments to the federal regulatory framework that could enhance public health protection for both planned and unplanned (or de facto) reuse and increase public confidence in water reuse.













Removal of Trace Organic Compounds in Domestic Wastewater Using Recirculating Packed-bed Media Filters


Book Description

Pharmaceuticals and personal care products (PPCPs) are commonly detected in the environment resulting from their survival from conventional wastewater treatment systems. More information is needed about the fate and transfer of these trace organic compounds in domestic wastewater and their associated risks so that efficient strategies for their removal can be developed for both large/small scale treatment systems. This study aimed to determine whether onsite wastewater treatment systems were capable of providing PPCP removal, in addition to quantifying different forms of removal (biodegradation/sorption). A column study was constructed to determine the removal efficiencies of 3 target PPCPs, endocrine disrupting compound triclosan (TRI) and non-steroidal anti-inflammatory drugs ibuprofen (IBU) and naproxen (NAP), in a small-scale recirculating media filter. To ensure bioreactor productivity the pH, chemical oxygen demand (COD), total organic carbon (TOC), and total nitrogen (TN) of the influent and effluent were analyzed. All columns showed consistent neutralization of pH, coupled with a large removal of COD (>90%) and TOC (>95%). Nitrifying/denitrifying conditions were attained, presenting removal of TN between 35% and 85% in all columns. Spiked experimental columns (0.1 ppm) with the target PPCPs were compared to one controlled column. Mean total removal of the trace organics were moderately high (>80%). Sorption of the PPCPs onto biofilm was quantified; TRI experienced the highest sorption (2.5±0.2%), followed by IBU and NAP (0.3±.1 and 0.4±0.3%). Therefore, estimated degradation percentages of parent compounds for IBU, NAP, and TRI were 85±8.2%, 88±4.6%, and 86±2.2%, respectively. Negative mass balances of PPCP removal occurred within experimental columns only, suggesting possible desorption or change in degradation kinetics attributed to compound addition.










Effectiveness of Engineered and Natural Wastewater Treatment Processes for the Removal of Trace Organics in Water Reuse


Book Description

Due to their potential health impact on human beings and ecosystems, persistent trace organic compounds (TOrCs) have aroused concern from both the public and professionals. In particular, the discharge of pharmaceuticals, endocrine disrupters, disinfection byproducts and other TOrCs from wastewater treatment plants into the environment is an area of extensive current research. This work studies the fate and treatments of TOrCs, with emphases on advanced oxidation processes (AOPs). This work presents predicted removal efficiencies of a variety of engineered and natural processes for 55 frequently encountered TOrCs in treated wastewater, based on previously reported data and using existing predictive models. Correlations between physicochemical and biological properties of TOrCs and treatment performance were explored. Removal of TOrCs in all processes investigated in this study was found to be sensitive to matrix effects. Heuristic guidelines for selection of sequenced treatment processes for TOrCs management were established. A field reconnaissance of natural process of TOrCs was conducted by analyzing the occurrence and fate of a suite of TOrCs, as well as estrogenic activity in water and sediments in the Santa Cruz River, an effluent-dependent stream in Tucson, Arizona. Some TOrCs, including contributors to estrogenic activity, were rapidly attenuated with distance of travel in the river. TOrCs that have low biodegradability and low octanolwater partitioning coefficients were less removed. Results of independent experiments indicated potential indirect photodegradation of estrogenic compound by reactive species generated from photolysis of effluent organic matter. Utilizing advanced oxidation processes (AOPs) as tertiary water and wastewater treatment is an option to prevent discharge of TOrCs into the environment. Compared to conventional AOPs, the ability of generating hydroxyl radicals (•OH) without additional doses of hydrogen peroxide (H2O2) or ozone makes ultraviolet (UV) photolysis of ferric hydroxo complexes a novel AOP, especially in acidic environments. A Fe(III)/UV254 kinetic model, which combines Fenton-like mechanism, and photolyses of Fe3+, FeOH2+ and H2O2 was proposed and experimentally validated to predict Fenton-like and H2O2 direct UV254 photolysis scenarios, individually. Nevertheless, the model underestimated the ferrous ion development during Fe(III)/UV254 photolysis, perhaps due to the overprediction of the oxidation of Fe2+ by •OH. The UV/H2O2 AOP was also studied in this work. A predictive kinetic model was developed to evaluate process efficiency of oxidation of p-cresol by UV/H2O2 photolysis based on a complete reaction mechanism, including reactions of intermediates with •OH. Results of this study highlight the significance of consideration of radical scavenging effects by the byproducts from oxidation of organic matter in model prediction performance.