Feature Weighting for Clustering


Book Description

K-Means is arguably the most popular clustering algorithm; this is why it is of great interest to tackle its shortcomings. The drawback in the heart of this project is that this algorithm gives the same level of relevance to all the features in a dataset. This can have disastrous consequences when the features are taken from a database just because they are available. To address the issue of unequal relevance of the features we use a three-stage extension of the generic K-Means in which a third step is added to the usual two steps in a K-Means iteration: feature weighting update. We extend the generic K-Means to what we refer to as Minkowski Weighted K-Means method. We apply the developed approaches to problems in distinguishing between different mental tasks over high-dimensional EEG data.




Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering


Book Description

This book puts forward a new method for solving the text document (TD) clustering problem, which is established in two main stages: (i) A new feature selection method based on a particle swarm optimization algorithm with a novel weighting scheme is proposed, as well as a detailed dimension reduction technique, in order to obtain a new subset of more informative features with low-dimensional space. This new subset is subsequently used to improve the performance of the text clustering (TC) algorithm and reduce its computation time. The k-mean clustering algorithm is used to evaluate the effectiveness of the obtained subsets. (ii) Four krill herd algorithms (KHAs), namely, the (a) basic KHA, (b) modified KHA, (c) hybrid KHA, and (d) multi-objective hybrid KHA, are proposed to solve the TC problem; each algorithm represents an incremental improvement on its predecessor. For the evaluation process, seven benchmark text datasets are used with different characterizations and complexities. Text document (TD) clustering is a new trend in text mining in which the TDs are separated into several coherent clusters, where all documents in the same cluster are similar. The findings presented here confirm that the proposed methods and algorithms delivered the best results in comparison with other, similar methods to be found in the literature.




Computational Methods of Feature Selection


Book Description

Due to increasing demands for dimensionality reduction, research on feature selection has deeply and widely expanded into many fields, including computational statistics, pattern recognition, machine learning, data mining, and knowledge discovery. Highlighting current research issues, Computational Methods of Feature Selection introduces the




Advances in Data Science


Book Description

Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.




Finding Groups in Data


Book Description

Partitioning around medoids (Program PAM). Clustering large applications (Program CLARA). Fuzzy analysis (Program FANNY). Agglomerative Nesting (Program AGNES). Divisive analysis (Program DIANA). Monothetic analysis (Program MONA). Appendix.




Multivariate Analysis of Ecological Data


Book Description

La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.




Information Retrieval


Book Description

An edited volume containing data structures and algorithms for information retrieved including a disk with examples written in C. For programmers and students interested in parsing text, automated indexing, its the first collection in book form of the basic data structures and algorithms that are critical to the storage and retrieval of documents.




Advances in Intelligent Data Analysis VI


Book Description

This book constitutes the refereed proceedings of the 6th International Conference on Intelligent Data Analysis, IDA 2005, held in Madrid, Spain in September 2005. The 46 revised papers presented together with two tutorials and two invited talks were carefully reviewed and selected from 184 submissions. All current aspects of this interdisciplinary field are addressed; the areas covered include statistics, machine learning, data mining, classification and pattern recognition, clustering, applications, modeling, and interactive dynamic data visualization.




Interpretable Machine Learning


Book Description

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.




Data Clustering: Theory, Algorithms, and Applications, Second Edition


Book Description

Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.