Feedback Loop Stability Analysis


Book Description

Tough math is made easier in this much-needed book of simple and unique solutions to a basic and widespread circuit design problem. All electronics engineers confront feedback issues that distort circuit and system performance; Friauf shows how to circumvent and/or analyze problems for satisfactory resolution. By breaking down the complex mathematics and verbally interpreting the results, he helps readers develop the intuitive "feel" that underlies practical solutions. Contains examples, worked-out problems, and a wealth of illustrated bode plots for visual interpretation and reference.




Feedback Control Theory


Book Description

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.




Feedback Systems


Book Description

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory




Biological Clocks, Rhythms, and Oscillations


Book Description

An introduction to the mathematical, computational, and analytical techniques used for modeling biological rhythms, presenting tools from many disciplines and example applications. All areas of biology and medicine contain rhythms, and these behaviors are best understood through mathematical tools and techniques. This book offers a survey of mathematical, computational, and analytical techniques used for modeling biological rhythms, gathering these methods for the first time in one volume. Drawing on material from such disciplines as mathematical biology, nonlinear dynamics, physics, statistics, and engineering, it presents practical advice and techniques for studying biological rhythms, with a common language. The chapters proceed with increasing mathematical abstraction. Part I, on models, highlights the implicit assumptions and common pitfalls of modeling, and is accessible to readers with basic knowledge of differential equations and linear algebra. Part II, on behaviors, focuses on simpler models, describing common properties of biological rhythms that range from the firing properties of squid giant axon to human circadian rhythms. Part III, on mathematical techniques, guides readers who have specific models or goals in mind. Sections on “frontiers” present the latest research; “theory” sections present interesting mathematical results using more accessible approaches than can be found elsewhere. Each chapter offers exercises. Commented MATLAB code is provided to help readers get practical experience. The book, by an expert in the field, can be used as a textbook for undergraduate courses in mathematical biology or graduate courses in modeling biological rhythms and as a reference for researchers.




Stability Analysis and Controller Design of Local Model Networks


Book Description

This book treats various methods for stability analysis and controller design of local model networks (LMNs). LMNs have proved to be a powerful tool in nonlinear dynamic system identification. Their system architecture is more suitable for controller design compared to alternative approximation methods. The main advantage is that linear controller design methods can be, at least locally, applied and combined with nonlinear optimization to calibrate stable state feedback as well as PID controller. The calibration of stable state-feedback controllers is based on the closed loop stability analysis methods. Here, global LMIs (Linear Matrix Inequalities) can be derived and numerically solved. For LMN based nonlinear PID controllers deriving global LMIs is not possible. Thus, two approaches are treated in this book. The first approach works iteratively to get LMIs in each iteration step. The second approach uses a genetic algorithm to determine the PID controller parameters where for each individual the stability is checked. It allows simultaneous enhancement of (competing) optimization criteria.




Control Engineering


Book Description

The book introduces the fundamentals (principle, structure, characteristics, classification etc.) of control systems. The dynamic behavior are also illustrated in detail. The authors also present the time/ frequency/stability/error response analyses of control system. This book is an essential reference for graduate students, scientists and practitioner in the research fields of mechanical and electrical engineering.




A Guide to Feedback Theory


Book Description

Do you need to understand feedback? Perhaps you're a little rusty on theory basics? Dig in to this self-contained guide for an accessible and concise explanation of the fundamentals. Distills the relevant essence of linear system theory, calculus, differential equations, linear algebra, basic physics, numerical methods, and complex analysis, and links them back to an explanation of feedback theory. Provides a tight synthesis of analytical and conceptual understanding. Maintains a focus on common use cases. Whether you are a struggling undergraduate, a doctoral student preparing for your qualifying exams, or an industry practitioner, this easy-to-understand book invites you to relax, enjoy the material, and follow your curiosity.




Stability Analysis of Fuzzy-Model-Based Control Systems


Book Description

In this book, the state-of-the-art fuzzy-model-based (FMB) based control approaches are covered. A comprehensive review about the stability analysis of type-1 and type-2 FMB control systems using the Lyapunov-based approach is given, presenting a clear picture to researchers who would like to work on this field. A wide variety of continuous-time nonlinear control systems such as state-feedback, switching, time-delay and sampled-data FMB control systems, are covered. In short, this book summarizes the recent contributions of the authors on the stability analysis of the FMB control systems. It discusses advanced stability analysis techniques for various FMB control systems, and founds a concrete theoretical basis to support the investigation of FMB control systems at the research level. The analysis results of this book offer various mathematical approaches to designing stable and well-performed FMB control systems. Furthermore, the results widen the applicability of the FMB control approach and help put the fuzzy controller in practice. A wide range of advanced analytical and mathematical analysis techniques will be employed to investigate the system stability and performance of FMB-based control systems in a rigorous manner. Detailed analysis and derivation steps are given to enhance the readability, enabling the readers who are unfamiliar with the FMB control systems to follow the materials easily. Simulation examples, with figures and plots of system responses, are given to demonstrate the effectiveness of the proposed FMB control approaches.




Classical Feedback Control


Book Description

This second edition textbook describes the design and implementation of high-performance feedback controllers for engineering systems. It emphasizes the frequency-domain design and methods based on Bode integrals, loop shaping, and nonlinear dynamic compensation. The authors include many problems and offer practical applications, illustrations, and




Biological Feedback


Book Description

Clearly explaining the logical analysis of biological control phenomena, Biological Feedback answers questions concerning everything from regulation to logic. This rare monograph presents a formal methodology for analyzing the dynamic behavior of complex systems. The easy-to-read text describes a simple logical formalization called "kinetic logic". The reader discovers how this method is used to predict all possible patterns of behavior of which a system is capable. It includes specific conditions required for each pattern. It also explains how to modify an incorrect model in order to account for the observed behavior. The authors give special attention to the two basic types of simple feedback loops: positive and negative. This volume is filled with easy-to-use tables, providing quick reference throughout the book. The subject matter is of great interest to everyone working in molecular genetics and developmental biology. Researchers, immunologists, physical chemists, physicists, electrical engineers, economists, and mathematicians will find this unique text to be an informative, indispensable resource.