Festkörper Probleme VIII


Book Description

Festkörper Probleme VIII reviews the status of radiation damage in semiconducting materials and components. This book examines the problems connected to the mechanism of production of defects by bombardment with energetic particles, particularly the displacement energy. Comprised of nine chapters, this book begins with an overview of the microstructure of radiation defects in silicon, which is known from optical absorption experiments and electron spin resonance. This text then explains the preparation of single crystals of high purity or defined impurity contents, which is the basis of successful solid state research. Other chapters consider the widespread application of vapor phase reactions. This book discusses as well mechanism of latent image formation, which considers some advances in silver halide research. The final chapter explains the useful information that can be obtained by a study of the field effects. This book is a valuable resource for solid state physicists as well as applied physicists.




Festkörper Probleme IX


Book Description

Festkörper Probleme IX: Advances in Solid State Physics presents a model for the behavior of electrons in non-crystalline materials. This book describes some experimental evidence that supports for the behavior of electrons. Organized into 16 chapters, this book begins with an overview of crystallization, glass forming, and melting processes in systems forming chalcogenide glasses. This text then describes the theory of the transport properties of electrons in non-crystalline solids and liquids. Other chapters consider the optical and electrical properties of amorphous semiconductors wherein the treatment is mainly restricted to the elements selenium, germanium, and tellurium. This book discusses as well the basic aspects of the optical phenomena of the Jahn–Teller effect, with emphasis on some criteria of the strength and observability of the Jahn–Teller effect. The final chapter deals with the methods for processing emulsion and metal film masks. This book is a valuable resource for solid state physicists.




Festkörper Probleme XI


Book Description

Festkörperprobleme XI: Advances in Solid State Physics reviews advances in solid state physics and covers topics ranging from localized vibrational modes in semiconductors to isoelectric impurities in semiconductors, deep impurities, and liquid crystals. Elastic and inelastic electron tunneling through potential barriers in solids is also discussed, along with plasma physics and astrophysics. This book is comprised of 14 chapters and begins with a review of the theoretical and experimental requirements for the observation of high frequency, localized vibrational modes of impurities in a crystal lattice. The reader is then introduced to the properties of deep impurity levels in semiconductors. Some typical examples of isoelectronic impurities are presented, and theories of isoelectronic traps are considered. Subsequent chapters focus on the properties of the various types of liquid crystalline phases (nematic, cholesteric, and smectic); a few astrophysical problems for which the properties of the astrophysical plasma are important; and the use of stochastic models to probe the kinetics of phase transitions. Experimental results for elastic and inelastic electron tunneling through potential barriers in solids are also presented. This monograph will be of interest to physicists.




Festkörper Probleme


Book Description

Festkorper Probleme VII covers papers of the European Meeting of the IEEE about Semiconductor Device Research. The book includes papers about the advances in band structures investigations using optical techniques; some problems in the physics of power rectifiers and thyristors; the surface properties of thermally oxidized silicon; and the amplification of acoustic waves at microwave frequencies. The text also presents papers about active thin film devices, optoelectronic devices, and negative conductance in semiconductors. Electrical engineers will find the book invaluable.




Festkörper Probleme


Book Description

Festkorper Probleme XIII: Advances in Solid State Physics is a collection of papers from plenary lectures of the solid states division of the German Physical Society in Munster, on March 19-24, 1973. This collection deals with semiconductor physics, surface phenomena, and surface physics. One paper reviews the findings on experiments on the magnetic, optical, electrical, and structural properties of layer type crystals, particularly metal dichalcogenides. This book then discusses the van der Waals attraction using semi-classical methods to explain the correlation in different atoms. This discussion explains the application of the Schrodinger formalism and the Maxwell equations. One paper also reviews the energy distribution of electrons emitted from solids after ultraviolet radiation or monochromatic X-ray exposure. Another paper reviews the use of clean silicon surfaces associated with electron emitters showing ""negative electron affinity."" A paper then reviews the mechanism of charge-transfer devices, with emphasis on the physics of the transfer processes that happen in surface charge-coupled devices or bulk-charge-couple devices. This compendium will prove useful for materials physicists, scientists, and academicians in the field of advanced physics.




Advances in Solid State Physics


Book Description

Festkorperprobleme X: Advances in Solid State Physics is a compilation of papers and lectures on semiconductor physics, low temperature physics, thermodynamics, and metal physics of the German Physical Society, Freudenstadt, on April 6-11, 1970. This volume is a collection of 13 papers in English and German on the abovementioned subjects. The book describes some characteristics of the different families of narrow bandgap semiconductors; the result arising from the interaction between free carriers and acoustic waves in solids; and the advances made in the field of modulation spectroscopy. The text further discusses the relations between the state of the photoemitted electrons and the absorption process in the solid. In Chapter 8, applications to various problems in semiconductor physics are dealt with. The Empirical Pseudopotential Method and the theory of phonon dispersion curves from a pseudopotential point of view are also considered. Further examined is the Ginzburg-Landau theory of superconductivity in relation to the probability distribution of the electric field strength of laser light that has a form completely analogous to that of the pair wave function of the theory. The implications of the thermodynamics of point defects in imperfect crystals and the association of foreign ions and vacancies due to their Coulomb interaction, resulting in complexes, are investigated. This book is of interest to electrical engineers, research engineers, professors, and students in theoretical or experimental physics.










Properties of Aluminium Gallium Arsenide


Book Description

The alloy system A1GaAs/GaAs is potentially of great importance for many high-speed electronics and optoelectronic devices, because the lattice parameter difference GaAs and A1GaAs is very small, which promises an insignificant concentration of undesirable interface states. Thanks to this prominent feature, a number of interesting properties and phenomena, such as high-mobility low-dimensional carrier gases, resonant tunnelling and fractional quantum Hall effect, have been found in the A1GaAs/GaAs heterostructure system. New devices, such as modulation-doped FETs, heterojunction bipolar transistors, resonant tunnelling transistors, quantum-well lasers, and other photonic and quantum-effect devices, have also been developed recently using this material system. These areas are recognized as not being the most interesting and active fields in semiconductor physics and device engineering.