Field Guide to Optical Fabrication


Book Description

Provides optical designers, shop managers, opticians, and purchasers a concise reference explaining what the designer needs to know before making final choices and how to specify the components before they are ordered. It presents how conventional fabrication proceeds for representative components, alternative and emerging methods to optical fabrication, product evaluation, and the calculations used.




Materials Science and Technology of Optical Fabrication


Book Description

Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.




Field Guide to Digital Micro-optics


Book Description

Traditional macro-optics can be designed without complex design software tools. However, digital optics, especially wafer-scale micro-optics, require specific software and tools. There is often no analytical solution, and thus complex iterative optimization algorithms may be required. This book covers refractive and diffractive micro-optics, the iterative optimization process, and modeling and fabrication techniques crucial to this field. The ability to create hybrid systems capable of producing analog and digital functionality is also addressed.




Field Guide to Lens Design


Book Description

The process of designing lenses is both an art and a science. While advances in the field over the past two centuries have done much to transform it from the former category to the latter, much of the lens design process remains encapsulated in the experience and knowledge of industry veterans. This SPIE Field Guide provides a working reference for practicing physicists, engineers, and scientists for deciphering the nuances of basic lens design.




Field Guide to Infrared Optical Materials


Book Description

"Today's SWIR, MWIR, LWIR and multispectral technologies cover a wide range of commercial and military applications and continue to rapidly expand in almost every aspect of our lives. This Field Guide focuses on the most common infrared crystals and glasses used in these systems, from their manufacturing methods through modern optical fabrication technologies to the end-use applications. Detailed optical, crystallographic, mechanical, chemical, and thermal properties of the most popular infrared materials are reviewed in detail along with process flows and relative comparisons. The Field Guide to Infrared Optical Materials provides a concise and convenient resource for those interested in the materials used in infrared optical systems"--




Field Guide to Diffractive Optics


Book Description

Recent advancements in microfabrication technologies and the development of powerful simulation tools have led to a significant expansion of diffractive optics and diffractive optical components. Instrument developers can choose from a broad range of diffractive optics elements to complement refractive and reflective components in achieving a desired control of the optical field. This Field Guide provides the operational principles and established terminology of diffractive optics as well as a comprehensive overview of the main types of diffractive optics components. An emphasis is placed on the qualitative explanation of the diffraction phenomenon by the use of field distributions and graphs, providing the basis for understanding the fundamental relations and important trends.




Fabrication Methods for Precision Optics


Book Description

Based on an unpublished revision of the standard reference in the German optics industry. Designed as a source of facts, data and definitions, it reflects state-of-the-art technology and current practices in the United States and abroad. Practical in nature, it presents optical engineers with comprehensive coverage of material, tool and design methods and testing of the final product. Easily accessible with tables, graphs and equations, it will help professionals quickly and accurately find the most suitable solutions to their optical challenges.




Field Guide to Fiber Optic Sensors


Book Description

The continued improvement and reduction in costs associated with fiber optic technology associated with fiber sensors permit application areas that were previously inaccessible. These trends are expected to continue as new techniques become available and older ones are successfully adapted to new applications. This Field Guide provides a broad introduction to a variety of fiber optic sensors that have been successfully developed from the 1970s to the present. A wide range of examples are provided to inspire readers with ideas for new sensors and uses




Diffractive Optics


Book Description

This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.




Mounting Optics in Optical Instruments


Book Description

Entirely updated to cover the latest technology, this Second Edition gives optical designers and optomechanical engineers a thorough understanding of the principal ways in which optical components - lenses, windows, filters, shells, domes, prisms, and mirrors of all sizes - are mounted in optical instruments.Along with new information on tolerancing, sealing considerations, elastomeric mountings, alignment, stress estimation, and temperature control, two new chapters address the mounting of metallic mirrors and the alignment of reflective and catadioptric systems.The updated accompanying CD-ROM offers a convenient spreadsheet of the many equations that are helpful in solving problems encountered when mounting optics in instruments.