Handbook of Finite Translation Planes


Book Description

The Handbook of Finite Translation Planes provides a comprehensive listing of all translation planes derived from a fundamental construction technique, an explanation of the classes of translation planes using both descriptions and construction methods, and thorough sketches of the major relevant theorems. From the methods of Andre to coordi




Translation Planes


Book Description

Wir unterhielten uns einmal dariiber, daB man sich in einer fremden Sprache nur unfrei ausdriicken kann und im Zweifelsfall lieber das sagt, was man richtig und einwandfrei zu sagen hofft, als das, was man eigentlich sagen will. Molnar nickte bestatigend: "Es ist sehr traurig", resiimierte er. "Ich habe oft mitten im Satz meine Weltanschauung andem miissen ..." Friedrich Torberg, Die Tante Jolesch The last two decades have witnessed great progress in the theory of translation planes. Being interested in, and having worked a little on this subject, I felt the need to clarify for myself what had been happening in this area of mathematics. Thus I lectured about it for several semesters and, at the same time, I wrote what is now this book. It is my very personal view of the story, which means that I selected mainly those topics I had touched upon in my own investigations. Thus finite translation planes are the main the~ of the book. Infinite translation planes, however, are not completely disregarded. As all theory aims at the mastering of the examples, these play a central role in this book. I believe that this fact will be welcomed by many people. However, it is not a beginner's book of geometry. It presupposes consider able knowledge of projective planes and algebra, especially group theory. The books by Gorenstein, Hughes and Piper, Huppert, Passman, and Pickert mentioned in the bibliography will help to fill any gaps the reader may have.




Finite Translation Planes


Book Description




Finite Translation Planes


Book Description




Geometry of Derivation with Applications


Book Description

Geometry of Derivation with Applications is the fifth work in a longstanding series of books on combinatorial geometry (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes, and Combinatorics of Spreads and Parallelisms). Like its predecessors, this book will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood. Both are deeply examined in this volume, while ideas of non-commutative algebra are also described in detail, with all the necessary background given a geometric treatment. The book builds upon over twenty years of work concerning combinatorial geometry, charted across four previous books and is suitable as a reference text for graduate students and researchers. It contains a variety of new ideas and generalizations of established work in finite affine geometry and is replete with examples and applications.




Algebraic and Geometric Combinatorics


Book Description

Algebraic and Geometric Combinatorics







Compact Projective Planes


Book Description

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)




General Galois Geometries


Book Description

This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.