Finnie's Notes on Fracture Mechanics


Book Description

This textbook consists primarily of notes by Iain Finnie who taught a popular course on fracture mechanics at the University of California at Berkeley. It presents a comprehensive and detailed exposition of fracture, the fundamentals of fracture mechanics and procedures for the safe design of engineering components made from metal alloys, brittle materials like glasses and ceramics, and composites. Interesting and practical problems are listed at the end of most chapters to give the student practice in applying the theory. A solutions manual is provided to the instructor. The text presents a unified perspective of fracture with a strong fundamental foundation and practical applications. In addition to its role as a text, this reference would be invaluable for the practicing engineer who is involved in the design and evaluation of components that are fracture critical. This book also: Presents details of derivations of the basic equations of fracture mechanics and the historical context of the development of fracture theory and methodology Treats linear and nonlinear fracture mechanics methodologies beginning with a review of the basic equations of solid mechanics followed by solutions useful in fracture prediction Illustrates the basis of linear elastic fracture mechanics (LEFM), practical applications of LEFM in the design of fracture-tolerant structural components Offers interesting, practical, classroom proven problems at the end of most chapters Includes instructor's solutions manual




Damage Tolerance of Metallic Aircraft Structures


Book Description

This book provides a state-of-the-art review of the fail-safe and damage tolerance approaches, allowing weight savings and increasing aircraft reliability and structural integrity. The application of the damage tolerance approach requires extensive know-how of the fatigue and fracture properties, corrosion strength, potential failure modes and non-destructive inspection techniques, particularly minimum detectable defect and inspection intervals. In parallel, engineering practice involving damage tolerance requires numerical techniques for stress analysis of cracked structures. These evolved from basic mode I evaluations using rough finite element approaches, to current 3D modeling based on energetic approaches as the VCCT, or simulation of joining processes. This book provides a concise introduction to this subject.







Fatigue and Fracture Mechanics


Book Description










Fracture Mechanics


Book Description




Mechanics Today


Book Description

Mechanics Today, Volume 4 focuses on solid mechanics and applied mathematics. This book is divided into six chapters. Chapter I provides a general description of the basic features and relevant concepts of mixed boundary-value problems in mechanics. The problem of crack extension in a solid under arbitrary loads is discussed in Chapter II, emphasizing the crack growth that leads from a planar to a nonplanar configuration. The third chapter reviews various methods of solving the scattering of elastic waves by inclusions. The interactions of electromagnetic field with deformable bodies in motion are elaborated in Chapter IV, while problems involving solids carrying high electric currents or being placed in high magnetic fields are deliberated in Chapter V. The last chapter concentrates on the implications of the second law of thermodynamics, and consequences of thermodynamic material stability and its corresponding restrictions on the evolutionary equations for internal variables. This publication is useful to specialists, but is also beneficial to non-experts with sufficient background in applied mechanics.







Fatigue and Fracture Mechanics


Book Description