Water Reclamation Technologies for Safe Managed Aquifer Recharge


Book Description

Part of Groundwater Set - Buy all six books and save over 30% on buying separately! Water Reclamation Technologies for Safe Managed Aquifer Recharge has been developed from the RECLAIM WATER project supported by the European Commission under Thematic Priority 'Global Change and Ecosystems' of the Sixth Framework Programme. Its strategic objective is to develop hazard mitigation technologies for water reclamation providing safe and cost effective routes for managed aquifer recharge. Different treatment applications in terms of behaviour of key microbial and chemical contaminants are assessed. Engineered as well as natural treatment trains are investigated to provide guidance for sustainable MAR schemes using alternative sources such as effluent and stormwater. The technologies considered are also well suited to the needs of developing countries, which have a growing need of supplementation of freshwater resources. A broad range of international full-scale case studies enables insights into long-term system behaviour, operational aspects, and fate of a comprehensive number of compounds and contaminants, especially organic micropollutants and bulk organics. Water Reclamation Technologies for Safe Managed Aquifer Recharge depicts advances in water reclamation technologies and aims to provide new process combinations to treat alternative water sources to appropriate water quality levels for sustainable aquifer recharge. Editors: Christian Kazner, RWTH Aachen University, Germany, Thomas Wintgens, University of Applied Sciences and Arts Northwestern Switzerland, Peter Dillon, CSIRO, Australia




Artificial Recharge of Groundwater


Book Description

This text covers the proceedings of the third International Symposium - TISAR 98, held in Amsterdam. Topics include: basin recharge; water management in arid regions; behaviour of pollutants; bank, basin, well and other types of recharge; and storage and recovery efficiency.




Reactive Transport in Natural and Engineered Systems


Book Description

Open system behavior is predicated on a fundamental relationship between the timescale over which mass is transported and the timescale over which it is chemically transformed. This relationship describes the basis for the multidisciplinary field of reactive transport (RT). In the 20 years since publication of Review in Mineralogy and Geochemistry volume 34: Reactive Transport in Porous Media, RT principles have expanded beyond early applications largely based in contaminant hydrology to become broadly utilized throughout the Earth Sciences. RT is now employed to address a wide variety of natural and engineered systems across diverse spatial and temporal scales, in tandem with advances in computational capability, quantitative imaging and reactive interface characterization techniques. The present volume reviews the diversity of reactive transport applications developed over the past 20 years, ranging from the understanding of basic processes at the nano- to micrometer scale to the prediction of Earth global cycling processes at the watershed scale. Key areas of RT development are highlighted to continue advancing our capabilities to predict mass and energy transfer in natural and engineered systems.







Geochemical Processes


Book Description

This book is a result of the Priority Programme 546 run by the Deutsche Forschungsgemeinschaft. It presents the various ideas, concepts and conclusions that resulted from this Programme on the subject of geochemical processes with long-term effects in anthropogenically influenced drainage and ground water.




Groundwater Reactive Transport Models


Book Description

Ground water reactive transport models are useful to assess and quantify contaminant precipitation, absorption and migration in subsurface media. Many ground water reactive transport models available today are characterized by varying complexities, strengths, and weaknesses. Selecting accurate, efficient models can be a challenging task. This book addresses the needs, issues and challenges relevant to selecting a ground water reactive transport model to evaluate natural attenuation and alternative remediation schemes. It should serve as a handy guide for water resource managers seeking to achieve economically feasible results.