First Steps in Seismic Interpretation


Book Description

Intended for beginning interpreters, this book approaches seismic interpretation via synthesis of concepts and practical applications rather than through formal treatment of basic physics and geology. Based on the author's personal experience as a seismic interpreter, it is organised along the lines of notes from classes he designs and teaches.







Practical Seismic Data Analysis


Book Description

This modern introduction to seismic data processing in both exploration and global geophysics demonstrates practical applications through real data and tutorial examples. The underlying physics and mathematics of the various seismic analysis methods are presented, giving students an appreciation of their limitations and potential for creating models of the sub-surface. Designed for a one-semester course, this textbook discusses key techniques within the context of the world's ever increasing need for petroleum and mineral resources - equipping upper undergraduate and graduate students with the tools they need for a career in industry. Examples presented throughout the text allow students to compare different methods and can be demonstrated using the instructor's software of choice. Exercises at the end of sections enable students to check their understanding and put the theory into practice and are complemented by solutions for instructors and additional case study examples online to complete the learning package.




3-D Seismic Interpretation


Book Description

3-D seismic data have become the key tool used in the petroleum industry to understand the subsurface. In addition to providing excellent structural images, the dense sampling of a 3-D survey makes it possible to map reservoir quality and the distribution of oil and gas. Topics covered in this book include basic structural interpretation and map-making; the use of 3-D visualisation methods; interpretation of seismic amplitudes, including their relation to rock and fluid properties; and the generation and use of AVO and acoustic impedance datasets. This new paperback edition includes an extra appendix presenting new material on novel acquisition design, pore pressure prediction from seismic velocity, elastic impedance inversion, and time lapse seismics. Written by professional geophysicists with many years' experience in the oil industry, the book is indispensable for geoscientists using 3-D seismic data, including graduate students and new entrants into the petroleum industry.




Practical Applications of Time-lapse Seismic Data


Book Description

Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.




Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production


Book Description

This book introduces readers to the field of seismic data interpretation and evaluation, covering themes such as petroleum exploration and high resolution seismic data. It helps geoscientists and engineers who are practitioners in this area to both understand and to avoid the potential pitfalls of interpreting and evaluating such data, especially the over-reliance on sophisticated software packages and workstations alongside a lack of grasp on the elementary principles of geology and geophysics. Chapters elaborate on the necessary principles, from topics like seismic wave propagation and rock-fluid parameters to seismic modeling and inversions, explaining the need to understand geological implications. The difference between interpretation of data and its evaluation is highlighted and the author encourages imaginative, logical and practical application of knowledge. Readers will appreciate the exquisite illustrations included with the accessibly written text, which simplify the process of learning about interpretation of seismic data. This multidisciplinary, integrated and practical approach to data evaluation will prove to be a valuable tool for students and young professionals, especially those connected with oil companies.




Seismic Amplitude


Book Description

This book introduces practical seismic analysis techniques and evaluation of interpretation confidence, for graduate students and industry professionals - independent of commercial software products.







Seismic Attributes as the Framework for Data Integration Throughout the Oilfield Life Cycle


Book Description

Useful attributes capture and quantify key components of the seismic amplitude and texture for subsequent integration with well log, microseismic, and production data through either interactive visualization or machine learning. Although both approaches can accelerate and facilitate the interpretation process, they can by no means replace the interpreter. Interpreter “grayware” includes the incorporation and validation of depositional, diagenetic, and tectonic deformation models, the integration of rock physics systematics, and the recognition of unanticipated opportunities and hazards. This book is written to accompany and complement the 2018 SEG Distinguished Instructor Short Course that provides a rapid overview of how 3D seismic attributes provide a framework for data integration over the life of the oil and gas field. Key concepts are illustrated by example, showing modern workflows based on interactive interpretation and display as well as those aided by machine learning.




Seismic Inversion


Book Description

This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.