Handbook of Nanoscopy, 2 Volume Set


Book Description

This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals, alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and engineers, as well as graduate students and their lecturers.




Handbook of Crystal Growth


Book Description

Volume IIIA Basic TechniquesHandbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures.Volume IIIB Materials, Processes, and TechnologyHandbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.Volume IIIA Basic Techniques - Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. - Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth - Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology - Describes atomic level epitaxial deposition and other low temperature growth techniques - Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials - Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials




Transmission Electron Microscopy


Book Description

This groundbreaking text has been established as the market leader throughout the world. Profusely illustrated, the book provides the necessary instructions for successful hands-on application of this versatile materials characterization technique.




High Dielectric Constant Materials


Book Description

Issues relating to the high-K gate dielectric are among the greatest challenges for the evolving International Technology Roadmap for Semiconductors (ITRS). More than just an historical overview, this book will assess previous and present approaches related to scaling the gate dielectric and their impact, along with the creative directions and forthcoming challenges that will define the future of gate dielectric scaling technology.




Amorphous and Nanocrystalline Metals


Book Description

Fifty-eight peer-reviewed papers from the December 2003 symposium examine questions of structure, properties, and processing of amorphous and nanocrystalline materials. Organized into six sessions, the broad topics covered within this area of materials science include crystallization of amorphous alloys, quasicrystals from metallic glasses, processing and glass forming ability, physical properties, shear bands and mechanical properties, and applications and environmental effects. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).










High Energy Electron Diffraction and Microscopy


Book Description

This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using a general matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to familiarize the reader with practical applications. Diffuse and inelastic scattering and coherence effects are treated comprehensively both as a perturbation of elastic scattering and within the general multiple scattering quantum mechanical framework of the density matrix method. Among the highlights are the treatment of resonance diffraction of electrons, HOLZ diffraction, the formation of Kikuchi bands and lines and ring patterns, and application of diffraction to monitoring of growing surfaces. Useful practical data are summarised in tables including those of electron scattering factors for all the neutral atoms and many ions, and the temperature dependent Debye-Waller factors given for over 100 elemental crystals and compounds.




In-situ Electron Microscopy


Book Description

Von den Grundlagen über das Experiment bis zur Anwendung zeigt dieses Buch, wie sich Ionenstrahlanlagen, Rasterelektronenmikroskope und Transmissionselektronenmikroskope zur Beobachtung von Phänomenen bis hinunter zum Nanomaßstab in Echtzeit einsetzen lassen. Nach einem theoretischen Überblick werden experimentelle Verfahren zur Untersuchung von Aufwachsprozessen, Schmelzen, chemischen Reaktionen und Dotierung besprochen; außerdem geht es um die Messung mechanischer, magnetischer, optischer und elektronischer Kenndaten. Der letzte Abschnitt widmet sich Fragen der Soft-Matter-Charakterisierung.