Fluorine Magnetic Resonance Imaging


Book Description

Over the past decade, fluorine (19F) magnetic resonance imaging (MRI) has garnered significant scientific interest in the biomedical research community owing to the unique properties of fluorinated materials and the 19F nucleus. Fluorine has an intrinsically sensitive nucleus for MRI. There is negligible endogenous 19F in the body and thus there is no background signal. Fluorine-containing compounds are ideal tracer labels for a wide variety of MRI applications. Moreover, the chemical shift and nuclear relaxation rate can be made responsive to physiology via creative molecular design. This book is an interdisciplinary compendium that details cutting-edge science and medical research in the emerging field of 19F MRI. Edited by Ulrich Flögel and Eric Ahrens, two prominent MRI researchers, this book will appeal to investigators involved in MRI, biomedicine, immunology, pharmacology, probe chemistry, and imaging physics.




Guide to Fluorine NMR for Organic Chemists


Book Description

Following its well-received predecessor, this book offers an essential guide to chemists for understanding fluorine in spectroscopy. With over 1000 compounds and 100 spectra, the second edition adds new data – featuring fluorine effects on nitrogen NMR, chemical shifts, and coupling constants. • Explains how to successfully incorporate fluorine into target molecules and utilize fluorine substituents to structurally characterize organic compounds • Includes new data on nitrogen NMR, focusing on N-15, to portray the influence of fluorine upon nitrogen NMR chemical shifts and coupling constants • Expands on each chapter from the first edition with additional data and updated discussion from recent findings • "The flawless ordering of material covered in this stand-alone volume is such that information can be found very easily." – Angewandte Chemie review of the first edition, 2010




X-Nuclei Magnetic Resonance Imaging


Book Description

Standard magnetic resonance imaging (MRI) is a prominent clinical imaging modality used to diagnose and study diseases in vivo. It is principally based on the detection of the nuclei of hydrogen atoms (the proton; symbol 1H) in water molecules in tissues. X-nuclei MRI (also called non-proton MRI) is based on the detection of the nuclei of other atoms (X-nuclei) in the body, such as sodium (23Na), phosphorus (31P), chlorine (35Cl), potassium (39K), deuterium (2H), oxygen (17O), lithium (7Li), and fluorine (19F) using modified software and hardware. X-nuclei MRI can provide fundamental, new metabolic information related to cellular energetic metabolism and ion homeostasis in tissues that cannot be assessed using standard hydrogen MRI. This book is an introduction to the techniques and biomedical applications of X-nuclei MRI. It describes the theoretical and experimental basis of X-nuclei MRI, the limitations of this technique, and its potential biomedical applications for the diagnosis and prognosis of many disorders or for quantitative monitoring of therapies in a wide range of diseases. The book is divided into four parts. Part I includes a general description of X-nuclei nuclear magnetic resonance physics and imaging. Part II deals with the MRI of endogenous nuclei such as 23Na, 31P, 35Cl, and 39K; Part III, the MRI of endogenous/exogenous nuclei such as 2H and 17O; and Part IV, the MRI of exogenous nuclei such as 7Li and 19F. The book is illustrated throughout with many representative figures and includes references and reading suggestions in each section. It is the first book to introduce X-nuclei MRI to researchers, clinicians, students, and general readers who are interested in the development of imaging methods for assessing new metabolic information in tissues in vivo in order to diagnose diseases, improve prognosis, or measure the efficiency of therapies in a timely and quantitative manner. It is an ideal starting point for a clinical or scientific research project in non-proton MRI techniques.




Fluorine and Health


Book Description

Fluorine and Health presents a critical multidisciplinary overview on the contribution of fluorinated compounds to resolve the important global issue of medicinal monitoring and health care. The involved subjects are organized in three thematic parts devoted to Molecular Imaging, Biomedical Materials and Pharmaceuticals. Initially the key-position of partially fluorinated low molecular weight compounds labelled either with the natural 19F-isotope for Magnetic Resonance Imaging (MRI) or labelled with the radioactive [18F]-isotope for Positron Emission Tomography (PET) is highlighted. Both non-invasive methods belong to the most challenging in vivo imaging techniques in oncology, neurology and in cardiology for the diagnosis of diseases having the highest mortality in the industrialized countries. The manifold facets of fluorinated biomaterials range from inorganic ceramics to perfluorinated organic molecules. Liquid perfluorocarbons are suitable for oxygen transport and as potential respiratory gas carriers, while fluorinated polymers are connected to the pathology of blood vessels. Another important issue concerns the application of highly fluorinated liquids in ophthalmology. Moreover, fluorine is an essential trace element in bone mineral, dentine and tooth enamel and is applied for the prophylaxis and treatment of dental caries. The various origins of human exposure to fluoride species is detailed to promote a better understanding of the effect of fluoride species on living organisms.Medicinally relevant fluorinated molecules and their interactions with native proteins are the main focus of the third part. New molecules fluorinated in strategic position are crucial for the development of pharmaceuticals with desired action and optimal pharmacological profile. Among the hundreds of marketed active drug components there are more than 150 fluorinated compounds. The chapters will illustrate how the presence of fluorine atoms alters properties of bioactive compounds at various biochemical steps, and possibly facilitate its emergence as pharmaceuticals. Finally the synthetic potential of a fluorinase, the first C-F bond forming enzyme, is summarized. - New approach of topics involving chemistry, biology and medicinal techniques - Transdisciplinar papers on fluoride products - Importance of fluoride products in health - Updated data on specific topics




Make Life Visible


Book Description

This open access book describes marked advances in imaging technology that have enabled the visualization of phenomena in ways formerly believed to be completelyimpossible. These technologies have made major contributions to the elucidation of the pathology of diseases as well as to their diagnosis and therapy. The volume presents various studies from molecular imaging to clinical imaging. It also focuses on innovative, creative, advanced research that gives full play to imaging technology inthe broad sense, while exploring cross-disciplinary areas in which individual research fields interact and pursuing the development of new techniques where they fuse together. The book is separated into three parts, the first of which addresses the topic of visualizing and controlling molecules for life. Th e second part is devoted to imaging of disease mechanisms, while the final part comprises studies on the application of imaging technologies to diagnosis and therapy. Th e book contains the proceedings of the 12th Uehara International Symposium 2017, “Make Life Visible” sponsored by the Uehara Memorial Foundation and held from June 12 to 14, 2017. It is written by leading scientists in the field and is an open access publication under a CC BY 4.0 license.




Organofluorine Compounds in Biology and Medicine


Book Description

Organofluorine Compounds in Biology and Medicine covers topics on biochemically relevant organofluorine compounds and their synthesis and biochemical pathways. Organofluorine compounds have renewed interest in pharmaceutical industry, and therefore a concise book on this topic is highly relevant to the scientific community involved in this area. - Covers the synthesis, biochemical, and therapeutic applications of organofluorine compounds - Offers a complete text on biochemically relevant organofluorine compounds and their synthesis and mechanistic pathways - Provides one of the first major reference books on the biological and medicinal applications of organofluorine chemistry




Measuring Oxidants and Oxidative Stress in Biological Systems


Book Description

This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology.




NMR Spectroscopy


Book Description

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.




MRI from Picture to Proton


Book Description

MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.




Mass Spectrometry in Medicinal Chemistry


Book Description

This first overview of mass spectrometry-based pharmaceutical analysis is the key to improved high-throughput drug screening, rational drug design and analysis of multiple ligand-target interactions. The ready reference opens with a general introduction to the use of mass spectrometry in pharmaceutical screening, followed by a detailed description of recently developed analytical systems for use in the pharmaceutical laboratory. Applications range from simple binding assays to complex screens of biological activity and systems containing multiple targets or ligands -- all highly relevant techniques in the early stages in drug discovery, from target characterization to hit and lead finding.