Forecasting Volatility Using High Frequency Data


Book Description

Handbook chapter on volatility forecasting using high-frequency data, with surveys of reduced-form volatility forecasts and model-based volatility forecasts.




The Oxford Handbook of Economic Forecasting


Book Description

Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.




High Frequency Data, Frequency Domain Inference and Volatility Forecasting


Book Description

While it is clear that the volatility of asset returns is serially correlated, there is no general agreement as to the most appropriate parametric model for characterizing this temporal dependence. In this paper, we propose a simple way of modeling financial market volatility using high frequency data. The method avoids using a tight parametric model, by instead simply fitting a long autoregression to log-squared, squared or absolute high frequency returns. This can either be estimated by the usual time domain method, or alternatively the autoregressive coefficients can be backed out from the smoothed periodogram estimate of the spectrum of log-squared, squared or absolute returns. We show how this approach can be used to construct volatility forecasts, which compare favorably with some leading alternatives in an out-of-sample forecasting exercise.







Modelling and Forecasting High Frequency Financial Data


Book Description

The global financial crisis has reopened discussion surrounding the use of appropriate theoretical financial frameworks to reflect the current economic climate. There is a need for more sophisticated analytical concepts which take into account current quantitative changes and unprecedented turbulence in the financial markets. This book provides a comprehensive guide to the quantitative analysis of high frequency financial data in the light of current events and contemporary issues, using the latest empirical research and theory. It highlights and explains the shortcomings of theoretical frameworks and provides an explanation of high-frequency theory, emphasising ways in which to critically apply this knowledge within a financial context. Modelling and Forecasting High Frequency Financial Data combines traditional and updated theories and applies them to real-world financial market situations. It will be a valuable and accessible resource for anyone wishing to understand quantitative analysis and modelling in current financial markets.




Handbook of Modeling High-Frequency Data in Finance


Book Description

CUTTING-EDGE DEVELOPMENTS IN HIGH-FREQUENCY FINANCIAL ECONOMETRICS In recent years, the availability of high-frequency data and advances in computing have allowed financial practitioners to design systems that can handle and analyze this information. Handbook of Modeling High-Frequency Data in Finance addresses the many theoretical and practical questions raised by the nature and intrinsic properties of this data. A one-stop compilation of empirical and analytical research, this handbook explores data sampled with high-frequency finance in financial engineering, statistics, and the modern financial business arena. Every chapter uses real-world examples to present new, original, and relevant topics that relate to newly evolving discoveries in high-frequency finance, such as: Designing new methodology to discover elasticity and plasticity of price evolution Constructing microstructure simulation models Calculation of option prices in the presence of jumps and transaction costs Using boosting for financial analysis and trading The handbook motivates practitioners to apply high-frequency finance to real-world situations by including exclusive topics such as risk measurement and management, UHF data, microstructure, dynamic multi-period optimization, mortgage data models, hybrid Monte Carlo, retirement, trading systems and forecasting, pricing, and boosting. The diverse topics and viewpoints presented in each chapter ensure that readers are supplied with a wide treatment of practical methods. Handbook of Modeling High-Frequency Data in Finance is an essential reference for academics and practitioners in finance, business, and econometrics who work with high-frequency data in their everyday work. It also serves as a supplement for risk management and high-frequency finance courses at the upper-undergraduate and graduate levels.




High-Frequency Financial Econometrics


Book Description

A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.




Exploiting High Frequency Data for Volatility Forecasting and Portfolio Selection


Book Description

An instant may matter for the course of an entire life. It is with this idea that the present research had its inception. High frequency financial data are becoming increasingly available and this has triggered research in financial econometrics where information at high frequency can be exploited for different purposes. The most prominent example of this is the estimation and forecast of financial volatility. The research, chapter by chapter is summarized below. Chapter 1 provides empirical evidence on univariate realized volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. It examines leverage and volatility feedback effects among continuous and jump components of the S & P500 price and volatility dynamics, using recently developed methodologies to detect jumps and to disentangle their size from the continuous return and the continuous volatility. The research finds that jumps in return can improve forecasts of volatility, while jumps in volatility improve volatility forecasts to a lesser extent. Moreover, disentangling jump and continuous variations into signed semivariances further improves the out-of-sample performance of volatility forecasting models, with negative jump semivariance being highly more informative than positive jump semivariance. A simple autoregressive model is proposed and this is able to capture many empirical stylized facts while still remaining parsimonious in terms of number of parameters to be estimated. Chapter 2 investigates the out-of-sample performance and the economic value of multivariate forecasting models for volatility of exchange rate returns. It finds that, when the realized covariance matrix approximates the true latent covariance, a model that uses high frequency information for the correlation is more appropriate compared to alternative models that uses only low-frequency data. However multivariate FX returns standardized by the.




Challenges in Using High-frequency Financial Data in Estimating and Forecasting Return Volatility


Book Description

The availability of high-frequency financial data in the last 20 years has led to a rich literature on its estimation and forecasting. Motivated by the challenges in utilizing high-frequency financial data, we decide to investigate the problem of estimating and forecasting return volatility, taking into account the presence of market microstructure noise, jump, and time endogeneity. With this target in mind, we solve the volatility estimation problem by combining several existing methods with our Laplace estimator of volatility. We also investigate the forecasting problem by employing linear regression models. Furthermore, we apply a standard data cleaning procedure to reduce the potential impact of outliers and errors. After trimming, we are able to draw a robust conclusion across a variety of different linear regression models. The process leads to a better understanding of utilizing high-frequency financial data and its application in volatility forecasting.