Forest Structure from Terrestrial Laser Scanning


Book Description

"Forests are an important part of the natural ecosystem, providing resources such as timber and fuel, performing services such as energy exchange and carbon storage, and presenting risks, such as fire damage and invasive species impacts. Improved characterization of forest structural attributes is desirable, as it could improve our understanding and management of these natural resources. However, the traditional, systematic collection of forest information -- dubbed 'forest inventory' -- is time-consuming, expensive, and coarse when compared to novel 3-D measurement technologies. Remote sensing estimates, on the other hand, provide synoptic coverage, but often fail to capture the fine-scale structural variation of the forest environment. Terrestrial laser scanning (TLS) has demonstrated a potential to address these limitations, but its operational use has remained limited due to unsatisfactory performance characteristics vs. budgetary constraints of many end-users. To address this gap, my dissertation advanced affordable mobile laser scanning capabilities for operational forest structure assessment. We developed geometric reconstruction of forest structure from rapid-scan, low-resolution point cloud data, providing for automatic extraction of standard forest inventory metrics. To augment these results over larger areas, we designed a view-invariant feature descriptor to enable marker-free registration of TLS data pairs, without knowledge of the initial sensor pose. Finally, a graph-theory framework was integrated to perform multi-view registration between a network of disconnected scans, which provided improved assessment of forest inventory variables. This work addresses a major limitation related to the inability of TLS to assess forest structure at an operational scale, and may facilitate improved understanding of the phenomenology of airborne sensing systems, by providing fine-scale reference data with which to interpret the active or passive electromagnetic radiation interactions with forest structure. Outputs are being utilized to provide antecedent science data for NASA's HyspIRI mission and to support the National Ecological Observatory Network's (NEON) long-term environmental monitoring initiatives."--Abstract.




Biomass and Stem Volume Equations for Tree Species in Europe


Book Description

A review of stem volume and biomass equations for tree species growing in Europe is presented. The mathematical forms of the empirical models, the associated statistical parameters and information about the size of the trees and the country of origin were collated from scientific articles and from technical reports. The collected information provides a basic tool for estimation of carbon stocks and nutrient balance of forest ecosystems across Europe as well as for validation of theoretical models of biomass allocation.




On the Use of Rapid-scan, Low Point Density Terrestrial Laser Scanning (TLS) for Structural Assessment of Complex Forest Environments


Book Description

"Forests fulfill an important role in natural ecosystems, e.g., they provide food, fiber, habitat, and biodiversity, all of which contribute to stable ecosystems. Assessing and modeling the structure and characteristics in forests can lead to a better understanding and management of these resources. Traditional methods for collecting forest traits, known as “forest inventory”, is achieved using rough proxies, such as stem diameter, tree height, and foliar coverage; such parameters are limited in their ability to capture fine-scale structural variation in forest environments. It is in this context that terrestrial laser scanning (TLS) has come to the fore as a tool for addressing the limitations of traditional forest structure evaluation methods. However, there is a need for improving TLS data processing methods. In this work, we developed algorithms to assess the structure of complex forest environments – defined by their stem density, intricate root and stem structures, uneven-aged nature, and variable understory - using data collected by a low-cost, portable TLS system, the Compact Biomass Lidar (CBL). The objectives of this work are listed as follow: 1. Assess the utility of terrestrial lidar scanning (TLS) to accurately map elevation changes (sediment accretion rates) in mangrove forest; 2. Evaluate forest structural attributes, e.g., stems and roots, in complex forest environments toward biophysical characterization of such forests; and 3. Assess canopy-level structural traits (leaf area index; leaf area density) in complex forest environments to estimate biomass in rapidly changing environments. The low-cost system used in this research provides lower-resolution data, in terms of scan angular resolution and resulting point density, when compared to higher-cost commercial systems. As a result, the algorithms developed for evaluating the data collected by such systems should be robust to issues caused by low-resolution 3D point cloud data. The data used in various parts of this work were collected from three mangrove forests on the western Pacific island of Pohnpei in the Federated States of Micronesia, as well as tropical forests in Hawai’i, USA. Mangrove forests underscore the economy of this region, where more than half of the annual household income is derived from these forests. However, these mangrove forests are endangered by sea level rise, which necessitates an evaluation of the resilience of mangrove forests to climate change in order to better protect and manage these ecosystems. This includes the preservation of positive sediment accretion rates, and stimulating the process of root growth, sedimentation, and peat development, all of which are influenced by the forest floor elevation, relative to sea level. Currently, accretion rates are measured using surface elevation tables (SETs), which are posts permanently placed in mangrove sediments. The forest floor is measured annually with respect to the height of the SETs to evaluate changes in elevation (Cahoon et al. 2002). In this work, we evaluated the ability of the CBL system for measuring such elevation changes, to address objective #1. Digital Elevation Models (DEMs) were produced for plots, based on the point cloud resulted from co-registering eight scans, spaced 45 degree, per plot. DEMs are refined and produced using Cloth Simulation Filtering (CSF) and kriging interpolation. CSF was used because it minimizes the user input parameters, and kriging was chosen for this study due its consideration of the overall spatial arrangement of the points using semivariogram analysis, which results in a more robust model. The average consistency of the TLS-derived elevation change was 72%, with and RMSE value of 1.36 mm. However, what truly makes the TLS method more tenable, is the lower standard error (SE) values when compared to manual methods (10-70x lower). In order to achieve our second objective, we assessed structural characteristics of the above-mentioned mangrove forest and also for tropical forests in Hawaii, collected with the same CBL scanner. The same eight scans per plot (20 plots) were co-registered using pairwise registration and the Iterative Closest Point (ICP). We then removed the higher canopy using a normal change rate assessment algorithm. We used a combination of geometric classification techniques, based on the angular orientation of the planes fitted to points (facets), and machine learning 3D segmentation algorithms to detect tree stems and above-ground roots. Mangrove forests are complex forest environments, containing above-ground root mass, which can create confusion for both ground detection and structural assessment algorithms. As a result, we needed to train a supporting classifier on the roots to detect which root lidar returns were classified as stems. The accuracy and precision values for this classifier were assessed via manual investigation of the classification results in all 20 plots. The accuracy and precision for stem classification were found to be 82% and 77%, respectively. The same values for root detection were 76% and 68%, respectively. We simulated the stems using alpha shapes in order to assess their volume in the final step. The consistency of the volume evaluation was found to be 85%. This was obtained by comparing the mean stem volume (m3/ha) from field data and the TLS data in each plot. The reported accuracy is the average value for all 20 plots. Additionally, we compared the diameter-at-breast-height (DBH), recorded in the field, with the TLS-derived DBH to obtain a direct measure of the precision of our stem models. DBH evaluation resulted in an accuracy of 74% and RMSE equaled 7.52 cm. This approach can be used for automatic stem detection and structural assessment in a complex forest environment, and could contribute to biomass assessment in these rapidly changing environments. These stem and root structural assessment efforts were complemented by efforts to estimate canopy-level structural attributes of the tropical Hawai’i forest environment; we specifically estimated the leaf area index (LAI), by implementing a density-based approach. 242 scans were collected using the portable low-cost TLS (CBL), in a Hawaii Volcano National Park (HAVO) flux tower site. LAI was measured for all the plots in the site, using an AccuPAR LP-80 Instrument. The first step in this work involved detection of the higher canopy, using normal change rate assessment. After segmenting the higher canopy from the lidar point clouds, we needed to measure Leaf Area Density (LAD), using a voxel-based approach. We divided the canopy point cloud into five layers in the Z direction, after which each of these five layers were divided into voxels in the X direction. The sizes of these voxels were constrained based on interquartile analysis and the number of points in each voxel. We hypothesized that the power returned to the lidar system from woody materials, like branches, exceeds that from leaves, due to the liquid water absorption of the leaves and higher reflectivity for woody material at the 905 nm lidar wavelength. We evaluated leafy and woody materials using images from projected point clouds and determined the density of these regions to support our hypothesis. The density of points in a 3D grid size of 0.1 m, which was determined by investigating the size of the branches in the lower portion of the higher canopy, was calculated in each of the voxels. Note that “density” in this work is defined as the total number of points per grid cell, divided by the volume of that cell. Subsequently, we fitted a kernel density estimator to these values. The threshold was set based on half of the area under the curve in each of the distributions. The grid cells with a density below the threshold were labeled as leaves, while those cells with a density above the threshold were set as non-leaves. We then modeled the LAI using the point densities derived from TLS point clouds, achieving a R2 value of 0.88. We also estimated the LAI directly from lidar data by using the point densities and calculating leaf area density (LAD), which is defined as the total one-sided leaf area per unit volume. LAI can be obtained as the sum of the LAD values in all the voxels. The accuracy of LAI estimation was found to be 90%. Since the LAI values cannot be considered spatially independent throughout all the plots in this site, we performed a semivariogram analysis on the field-measured LAI data. This analysis showed that the LAI values can be assumed to be independent in plots that are at least 30 m apart. As a result, we divided the data into six subsets, where each of the plots were 30 meter spaced for each subset. LAI model R2 values for these subsets ranged between 0.84 - 0.96. The results bode well for using this method for automatic estimation of LAI values in complex forest environments, using a low-cost, low point density, rapid-scan TLS."--Abstract.




Airborne and Terrestrial Laser Scanning


Book Description

Written by a team of international experts, this book provides a comprehensive overview of the major applications of airborne and terrestrial laser scanning. It focuses on principles and methods and presents an integrated treatment of airborne and terrestrial laser scanning technology. After consideration of the technology and processing methods, the book turns to applications, such as engineering, forestry, cultural heritage, extraction of 3D building models, and mobile mapping. This book brings together the various facets of the subject in a coherent text that will be relevant for advanced students, academics and practitioners.







Beam Structures


Book Description

Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for beams and which has become established and recognised globally as the most important contribution to the field in the last quarter of a century. The Carrera Unified Formulation (CUF) has hierarchical properties, that is, the error can be reduced by increasing the number of the unknown variables. This formulation is extremely suitable for computer implementations and can deal with most typical engineering challenges. It overcomes the problem of classical formulae that require different formulas for tension, bending, shear and torsion; it can be applied to any beam geometries and loading conditions, reaching a high level of accuracy with low computational cost, and can tackle problems that in most cases are solved by employing plate/shell and 3D formulations. Key features: compares classical and modern approaches to beam theory, including classical well-known results related to Euler-Bernoulli and Timoshenko beam theories pays particular attention to typical applications related to bridge structures, aircraft wings, helicopters and propeller blades provides a number of numerical examples including typical Aerospace and Civil Engineering problems proposes many benchmark assessments to help the reader implement the CUF if they wish to do so accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own www.mul2.com Researchers of continuum mechanics of solids and structures and structural analysts in industry will find this book extremely insightful. It will also be of great interest to graduate and postgraduate students of mechanical, civil and aerospace engineering.




Ecology of Lianas


Book Description

Lianas are woody vines that were the focus of intense study by early ecologists, such as Darwin, who devoted an entire book to the natural history of climbing plants. Over the past quarter century, there has been a resurgence in the study of lianas, and liana are again recognized as important components of many forests, particularly in the tropics. The increasing amount of research on lianas has resulted in a fundamentally deeper understanding of liana ecology, evolution, and life-history, as well as the myriad roles lianas play in forest dynamics and functioning. This book provides insight into the ecology and evolution of lianas, their anatomy, physiology, and natural history, their global abundance and distribution, and their wide-ranging effects on the myriad organisms that inhabit tropical and temperate forests.




Forest Mensuration


Book Description

Van Laar and Akça’s popular text book, Forest Mensuration, was first published in 1997. Like that first edition, this modern update is based on extensive research, teaching and practical experience in both Europe, and the tropics and subtropics. However, it has also been extensively revised, and now includes chapters on remote sensing and the application of aerial photographs and satellite imagery. The book assumes no advanced knowledge of statistical methods, and combines practical techniques with important historical and disciplinary context. The result is a strong balance between a handbook and a valuable reference.




Topographic Laser Ranging and Scanning


Book Description

A systematic, in-depth introduction to theories and principles of Light Detection and Ranging (LiDAR) technology is long overdue, as it is the most important geospatial data acquisition technology to be introduced in recent years. An advanced discussion, this text fills the void. Professionals in fields ranging from geology, geography and geoinformatics to physics, transportation, and law enforcement will benefit from this comprehensive discussion of topographic LiDAR principles, systems, data acquisition, and data processing techniques. The book covers ranging and scanning fundamentals, and broad, contemporary analysis of airborne LiDAR systems, as well as those situated on land and in space. The authors present data collection at the signal level in terms of waveforms and their properties; at the system level with regard to calibration and georeferencing; and at the data level to discuss error budget, quality control, and data organization. They devote the bulk of the book to LiDAR data processing and information extraction and elaborate on recent developments in building extraction and reconstruction, highlighting quality and performance evaluations. There is also extensive discussion of the state-of-the-art technological developments used in: filtering algorithms for digital terrain model generation; strip adjustment of data for registration; co-registration of LiDAR data with imagery; forestry inventory; and surveying. Readers get insight into why LiDAR is the effective tool of choice to collect massive volumes of explicit 3-D data with unprecedented accuracy and simplicity. Compiled by leading experts talking about much of their own pioneering work, this book will give researchers, professionals, and senior students novel ideas to supplement their own experience and practices.




National Forest Inventories


Book Description

Forest inventories throughout the world have evolved gradually over time. The content as well as the concepts and de?nitions employed are constantly adapted to the users’ needs. Advanced inventory systems have been established in many countries within Europe, as well as outside Europe, as a result of development work spanning several decades, in some cases more than 100 years. With continuously increasing international agreements and commitments, the need for information has also grown drastically, and reporting requests have become more frequent and the content of the reports wider. Some of the agreements made at the international level have direct impacts on national economies and international decisions, e. g. , the Kyoto Protocol. Thus it is of utmost importance that the forest information supplied is collected and analysed using sound scienti?c principles and that the information from different countries is comparable. European National Forest Inventory (NFI) teams gathered in Vienna in 2003 to discuss the new challenges and the measures needed to get data users to take full advantage of existing NFIs. As a result, the European National Forest Inventory Network (ENFIN), a network of NFIs, was established. The ENFIN members decided to apply for funding for meetings and collaborative activities. COST– European Cooperation in Science and Technology - provided the necessary ?n- cial means for the realization of the program.