Guide to Fuel Treatments in Dry Forests of the Western United States


Book Description

The Fire and Fuels Extension of the Forest Vegetation Simulator (FFE-FVS) was used to calulate the immediate effects of treatments on surface fuels, fire hazard, potential fire behavior, and forest structure for respresentative dry forest stands in the Western United States. Treatments considered included pile and burn and prescribed fire.




Forests as Fuel


Book Description

In the US South, wood-based bioenergy schemes are being promoted and implemented through a powerful vision merging social, environmental, and economic benefits for rural, forest-dependent communities. While this dominant narrative has led to heavy investment in experimental technologies and rural development, many complexities and complications have emerged during implementation. Forests as Fuel draws on extensive multi-sited ethnography to ground the story of wood-based bioenergy in the biophysical, economic, political, social, and cultural landscape of this region. This book contextualizes energy issues within the history and potential futures of the region’s forested landscapes, highlighting the impacts of varying perceptions of climate change and complex racial dynamics. Eschewing simple answers, the authors illuminate the points of friction that occur as competing visions of bioenergy development confront each other to variously support, reshape, contest, or reject bioenergy development. Building on recent conceptual advances in studies of sociotechnical imaginaries, environmental history, and energy justice, the authors present a careful and nuanced analysis that can provide guidance for promoting meaningful participation of local community members in renewable energy policy and production while recognizing the complex interplay of factors affecting its implementation in local places.




Wildlife and Invertebrate Response to Fuel Reduction Treatments in Dry Coniferous Forests of the Western United States


Book Description

This paper synthesizes available information on the effects of hazardous fuel reduction treatments on terrestrial wildlife and invertebrates in dry coniferous forest types in the West. We focused on thinning and/or prescribed fire studies in ponderosa pine (Pinus ponderosa) and dry-type Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta), and mixed coniferous forests. Overall, there are tremendous gaps in information needed to evaluate the effects of fuel reduction on the majority of species found in our focal area. Differences among studies in location, fuel treatment type and size, and pre- and post-treatment habitat conditions resulted in variability in species responses. In other words, a species may respond positively to fuel reduction in one situation and negatively in another. Despite these issues, a few patterns did emerge from this synthesis. In general, fire-dependent species, species preferring open habitats, and species that are associated with early successional vegetation or that consume seeds and fruit appear to benefit from fuel reduction activities. In contrast, species that prefer closed-canopy forests or dense understory, and species that are closely associated with those habitat elements that may be removed or consumed by fuel reductions, will likely be negatively affected by fuel reductions. Some habitat loss may persist for only a few months or a few years, such as understory vegetation and litter that recover quickly. The loss of large-diameter snags and down wood, which are important habitat elements for many wildlife and invertebrate species, may take decades to recover and thus represent some of the most important habitat elements to conserve during fuel reduction treatments. Management activities that consider the retention of habitat structures (such as snags, down wood, and refugia of untreated stands) may increase habitat heterogeneity and may benefit the greatest number of species in the long run.




Handbook for Inventorying Surface Fuels and Biomass in the Interior West


Book Description

Presents comprehensive procedures for inventorying weight per unit area of living and dead surface vegetation, to facilitate estimation of biomass and appraisal of fuels. Provides instructions for conducting fieldwork and calculating estimates of downed woody material, forest floor litter and duff, herbaceous vegetation, shrubs, and small conifers. Procedures produce the most accurate estimates in the Interior West; however, techniques for herbs, litter, and downed woody material are applicable anywhere. Includes computer program and card punching instructions for processing inventory data.




Standard Fire Behavior Fuel Models


Book Description

This report describes a new set of standard fire behavior fuel models for use with Rothermels surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.




The Photoload Sampling Technique


Book Description

Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr, 100 hr, and 1000 hr downed dead woody, shrub, and herbaceous fuels). This technique involves visually comparing fuel conditions in the field with photoload sequences to estimate fuel loadings. Photoload sequences are a series of downward-looking and close-up oblique photographs depicting a sequence of graduated fuel loadings of synthetic fuelbeds for each of the six fuel components. This report contains a set of photoload sequences that describe the range of fuel component loadings for common forest conditions in the northern Rocky Mountains of Montana, USA to estimate fuel loading in the field. A companion publication (RMRS-RP-61CD) details the methods used to create the photoload sequences and presents a comprehensive evaluation of the technique.







Fuelwood Studies in India


Book Description

India's energy use dinamics. Review of sampling designs and methodologies for assessing consumption. Results of fuelwood studies: review and analysis.Trends. Identification of fuelwood hot spots. Policy responses to fuelwood issues. An approach to make fuelwood statistics reliable.




Why Forests? Why Now?


Book Description

Tropical forests are an undervalued asset in meeting the greatest global challenges of our time—averting climate change and promoting development. Despite their importance, tropical forests and their ecosystems are being destroyed at a high and even increasing rate in most forest-rich countries. The good news is that the science, economics, and politics are aligned to support a major international effort over the next five years to reverse tropical deforestation. Why Forests? Why Now? synthesizes the latest evidence on the importance of tropical forests in a way that is accessible to anyone interested in climate change and development and to readers already familiar with the problem of deforestation. It makes the case to decisionmakers in rich countries that rewarding developing countries for protecting their forests is urgent, affordable, and achievable.




Fire Frequency Effects on Fuel Loadings in Pine-oak Forests of the Madrean Province


Book Description

Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management agencies in the United States. Ecologists and land managers interested in reintroducing fire into these forests to reduce fuel loadings and meet other land management objectives could use information about fuel buildups in their planning efforts. Quantifying these fuel loadings could also be useful in improving fire behavior models for the forests.