Foundations of Deterministic and Stochastic Control


Book Description

"This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science




Linear Systems Control


Book Description

Modern control theory and in particular state space or state variable methods can be adapted to the description of many different systems because it depends strongly on physical modeling and physical intuition. The laws of physics are in the form of differential equations and for this reason, this book concentrates on system descriptions in this form. This means coupled systems of linear or nonlinear differential equations. The physical approach is emphasized in this book because it is most natural for complex systems. It also makes what would ordinarily be a difficult mathematical subject into one which can straightforwardly be understood intuitively and which deals with concepts which engineering and science students are already familiar. In this way it is easy to immediately apply the theory to the understanding and control of ordinary systems. Application engineers, working in industry, will also find this book interesting and useful for this reason. In line with the approach set forth above, the book first deals with the modeling of systems in state space form. Both transfer function and differential equation modeling methods are treated with many examples. Linearization is treated and explained first for very simple nonlinear systems and then more complex systems. Because computer control is so fundamental to modern applications, discrete time modeling of systems as difference equations is introduced immediately after the more intuitive differential equation models. The conversion of differential equation models to difference equations is also discussed at length, including transfer function formulations. A vital problem in modern control is how to treat noise in control systems. Nevertheless this question is rarely treated in many control system textbooks because it is considered to be too mathematical and too difficult in a second course on controls. In this textbook a simple physical approach is made to the description of noise and stochastic disturbances which is easy to understand and apply to common systems. This requires only a few fundamental statistical concepts which are given in a simple introduction which lead naturally to the fundamental noise propagation equation for dynamic systems, the Lyapunov equation. This equation is given and exemplified both in its continuous and discrete time versions. With the Lyapunov equation available to describe state noise propagation, it is a very small step to add the effect of measurements and measurement noise. This gives immediately the Riccati equation for optimal state estimators or Kalman filters. These important observers are derived and illustrated using simulations in terms which make them easy to understand and easy to apply to real systems. The use of LQR regulators with Kalman filters give LQG (Linear Quadratic Gaussian) regulators which are introduced at the end of the book. Another important subject which is introduced is the use of Kalman filters as parameter estimations for unknown parameters. The textbook is divided into 7 chapters, 5 appendices, a table of contents, a table of examples, extensive index and extensive list of references. Each chapter is provided with a summary of the main points covered and a set of problems relevant to the material in that chapter. Moreover each of the more advanced chapters (3 - 7) are provided with notes describing the history of the mathematical and technical problems which lead to the control theory presented in that chapter. Continuous time methods are the main focus in the book because these provide the most direct connection to physics. This physical foundation allows a logical presentation and gives a good intuitive feel for control system construction. Nevertheless strong attention is also given to discrete time systems. Very few proofs are included in the book but most of the important results are derived. This method of presentation makes the text very readable and gives a good foundation for reading more rigorous texts. A complete set of solutions is available for all of the problems in the text. In addition a set of longer exercises is available for use as Matlab/Simulink ‘laboratory exercises’ in connection with lectures. There is material of this kind for 12 such exercises and each exercise requires about 3 hours for its solution. Full written solutions of all these exercises are available.




Foundations of Deterministic and Stochastic Control


Book Description

"This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science







Stochastic Optimal Control


Book Description




Dynamic Programming and Optimal Control


Book Description

"The leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization. The treatment focuses on basic unifying themes, and conceptual foundations. It illustrates the versatility, power, and generality of the method with many examples and applications from engineering, operations research, and other fields. It also addresses extensively the practical application of the methodology, possibly through the use of approximations, and provides an extensive treatment of the far-reaching methodology of Neuro-Dynamic Programming/Reinforcement Learning. The first volume is oriented towards modeling, conceptualization, and finite-horizon problems, but also includes a substantive introduction to infinite horizon problems that is suitable for classroom use. The second volume is oriented towards mathematical analysis and computation, treats infinite horizon problems extensively, and provides an up-to-date account of approximate large-scale dynamic programming and reinforcement learning. The text contains many illustrations, worked-out examples, and exercises."--Publisher's website.




Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott


Book Description

This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.




Stochastic Systems


Book Description

Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.




Mathematical Control Theory


Book Description

In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.




Foundations of Stochastic Inventory Theory


Book Description

This book has a dual purpose?serving as an advanced textbook designed to prepare doctoral students to do research on the mathematical foundations of inventory theory, and as a reference work for those already engaged in such research. All chapters conclude with exercises that either solidify or extend the concepts introduced.