Foundations of Translation Planes


Book Description

An exploration of the construction and analysis of translation planes to spreads, partial spreads, co-ordinate structures, automorphisms, autotopisms, and collineation groups. It emphasizes the manipulation of incidence structures by various co-ordinate systems, including quasisets, spreads and matrix spreadsets. The volume showcases methods of structure theory as well as tools and techniques for the construction of new planes.




Handbook of Finite Translation Planes


Book Description

The Handbook of Finite Translation Planes provides a comprehensive listing of all translation planes derived from a fundamental construction technique, an explanation of the classes of translation planes using both descriptions and construction methods, and thorough sketches of the major relevant theorems. From the methods of Andre to coordi




Translation Planes


Book Description

The book discusses various construction principles for translation planes and spreads from a general and unifying point of view and relates them to the theory of kinematic spaces. The book is intended for people working in the field of incidence geometry and can be read by everyone who knows the basic facts about projective and affine planes. The methods developed work especially well for topological spreads of real and complex vector spaces. In particular, a complete classification of all semifield spreads of finite dimensional complex vector spaces is obtained.




Foundations of Translation Planes


Book Description

An exploration of the construction and analysis of translation planes to spreads, partial spreads, co-ordinate structures, automorphisms, autotopisms, and collineation groups. It emphasizes the manipulation of incidence structures by various co-ordinate systems, including quasisets, spreads and matrix spreadsets. The volume showcases methods of str




Geometry of Derivation with Applications


Book Description

Geometry of Derivation with Applications is the fifth work in a longstanding series of books on combinatorial geometry (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes, and Combinatorics of Spreads and Parallelisms). Like its predecessors, this book will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood. Both are deeply examined in this volume, while ideas of non-commutative algebra are also described in detail, with all the necessary background given a geometric treatment. The book builds upon over twenty years of work concerning combinatorial geometry, charted across four previous books and is suitable as a reference text for graduate students and researchers. It contains a variety of new ideas and generalizations of established work in finite affine geometry and is replete with examples and applications.




Unitals in Projective Planes


Book Description

This book is a monograph on unitals embedded in ?nite projective planes. Unitals are an interesting structure found in square order projective planes, and numerous research articles constructing and discussing these structures have appeared in print. More importantly, there still are many open pr- lems, and this remains a fruitful area for Ph.D. dissertations. Unitals play an important role in ?nite geometry as well as in related areas of mathematics. For example, unitals play a parallel role to Baer s- planes when considering extreme values for the size of a blocking set in a square order projective plane (see Section 2.3). Moreover, unitals meet the upper bound for the number of absolute points of any polarity in a square order projective plane (see Section 1.5). From an applications point of view, the linear codes arising from unitals have excellent technical properties (see 2 Section 6.4). The automorphism group of the classical unitalH =H(2,q ) is 2-transitive on the points ofH, and so unitals are of interest in group theory. In the ?eld of algebraic geometry over ?nite ?elds,H is a maximal curve that contains the largest number of F -rational points with respect to its genus, 2 q as established by the Hasse-Weil bound.




General Galois Geometries


Book Description

This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.







Finite Geometry and Combinatorial Applications


Book Description

A graduate-level introduction to finite geometry and its applications to other areas of combinatorics.




Fundamentals of Powder Diffraction and Structural Characterization of Materials


Book Description

Requires no prior knowledge of the subject, but is comprehensive and detailed making it useful for both the novice and experienced user of the powder diffraction method. Useful for any scientific or engineering background, where precise structural information is required. Comprehensively describes the state-of-the-art in structure determination from powder diffraction data both theoretically and practically using multiple examples of varying complexity. Pays particular attention to the utilization of Internet resources, especially the well-tested and freely available computer codes designed for processing of powder diffraction data.