Geometry of the Phase Retrieval Problem


Book Description

This book provides a theoretical foundation and conceptual framework for the problem of recovering the phase of the Fourier transform.







The Phase Retrieval Problem


Book Description

The phase retrieval problem is an inverse problem which consists of recovering a signal from a set of squared magnitude measurements. One version of this problem, often known as Fourier phase retrieval, arises ubiquitously in scientific imaging fields (such as diffraction imaging, crystallography, and optics, etc.) where one seeks to recover an image or signal from squared magnitude measurements of its Fourier transform. Another version, known as Gaussian phase retrieval, is manifested as the study of solving random systems of quadratic equations, and constitutes an important problem in the field of nonconvex optimization. The first part of this thesis introduces a general mathematical framework for the holographic phase retrieval problem. In this problem, which arises in holographic coherent diffraction imaging, a "reference" portion of the signal to be recovered via (Fourier) phase retrieval is a priori known from experimental design. A general formula is also derived for the expected recovery error when the measurement data is corrupted by Poisson shot noise. This facilitates an optimization perspective towards reference design and analysis, which is then employed towards quantifying the performance of various known reference choices. Based on insights gained from these results, a new "dual-reference" design is proposed which consists of two reference portions - being "block" and "pinhole" shaped regions - adjacent to the imaging specimen. Expected error analysis on data following a Poisson shot noise model shows that the dual-reference scheme produces uniformly superior performance over the leading single-reference schemes. Numerical experiments on simulated data corroborate these theoretical results, and demonstrate the advantage of the dual-reference design. Based on this work, a prototype experiment for holographic coherent diffraction imaging using a dual-reference has been designed at the SLAC National Accelerator Laboratory. The second part studies the one-dimensional Fourier phase retrieval problem, as well as the closely related spectral factorization problem. In its first chapter, a comprehensive exposition of the problem theory is provided. This includes a full characterization of its general nonuniqueness, as well as the special cases for which unique solutions exists. In the second chapter, a semidefinite programming formulation is derived for the Fourier phase retrieval problem. It is shown that this approach provides guaranteed recovery whenever there exists a unique phase retrieval solution. A correspondence is also established between solutions of the phase retrieval SDP, and sum-of-squares decompositions of Laurent and trigonometric polynomials. In the third chapter, a least-squares formulation is presented for the one-dimensional Fourier phase retrieval and spectral factorization problems. This formulation allows for the successful implementation of numerous first- and second-order optimization methods. In the third part, a biconvex formulation of the Gaussian phase retrieval problem is introduced. This allows for alternating-projection algorithms, such as ADMM and block coordinate descent, to be successfully applied to Gaussian phase retrieval. Both theoretical guarantees and numerical simulations demonstrate the success of these methods.




Nanoscale Photonic Imaging


Book Description

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.










Fourier Ptychographic Imaging


Book Description

This book demonstrates the concept of Fourier ptychography, a new imaging technique that bypasses the resolution limit of the employed optics. In particular, it transforms the general challenge of high-throughput, high-resolution imaging from one that is coupled to the physical limitations of the optics to one that is solvable through computation. Demonstrated in a tutorial form and providing many MATLAB® simulation examples for the reader, it also discusses the experimental implementation and recent developments of Fourier ptychography. This book will be of interest to researchers and engineers learning simulation techniques for Fourier optics and the Fourier ptychography concept.




The Fractional Fourier Transform


Book Description

The discovery of the Fractional Fourier Transform and its role in optics and data management provides an elegant mathematical framework within which to discuss diffraction and other fundamental aspects of optical systems. This book explains how the fractional Fourier transform has allowed the generalization of the Fourier transform and the notion of the frequency transform. It will serve as the standard reference on Fourier transforms for many years to come.




Music Through Fourier Space


Book Description

This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.




Phase retrieval problems in x-ray physics


Book Description

In phase retrieval problems that occur in imaging by coherent x-ray diffraction, one tries to reconstruct information about a sample of interest from possibly noisy intensity measurements of the wave fi eld traversing the sample. The mathematical formulation of these problems bases on some assumptions. Usually one of them is that the x-ray wave fi eld is generated by a point source. In order to address this very idealized assumption, it is common to perform a data preprocessing step, the so-called empty beam correction. Within this work, we study the validity of this approach by presenting a quantitative error estimate. Moreover, in order to solve these phase retrieval problems, we want to incorporate a priori knowledge about the structure of the noise and the solution into the reconstruction process. For this reason, the application of a problem adapted iteratively regularized Newton-type method becomes particularly attractive. This method includes the solution of a convex minimization problem in each iteration step. We present a method for solving general optimization problems of this form. Our method is a generalization of a commonly used algorithm which makes it efficiently applicable to a wide class of problems. We also proof convergence results and show the performance of our method by numerical examples.