Frontiers of Green Catalytic Selective Oxidations


Book Description

The demand for novel efficient and environmentally sustainable chemo, regio- and stereoselective catalyst systems for the oxidation of organic substrates is continuously growing in line with toughening economic and environmental constraints. This book addresses these issues; it consists of eleven chapters written by world-recognized experts in green and sustainable oxidation catalysis. The most urgent and challenging topics, in the judgment of the editor, such as green asymmetric epoxidations, sulfoxidatiuons, C–H oxidations; oxidation catalysis by polyoxometalates and oxidations in non-conventional solvents, etc. have been critically reviewed in this book. Both fundamental aspects, such as catalysts design, catalytic properties, nature of catalytically active sites and reaction mechanisms, and practical outlook of the oxidations have been addressed by the authors. The book appeals to a broad readership, particularly graduate students, employees of universities and research organizations, and industrial researchers, particularly those working in the areas of homogeneous oxidation catalysis, asymmetric synthesis, organocatalysis, sustainable catalytic processes and green chemistry, mechanisms of catalytic reactions, synthesis of bioactive compounds, biomimetic chemistry, etc. Konstantin Bryliakov is Leading Researcher at the Boreskov Institute of Catalysis. In 2016, he was elected Honorary Professor of the Russian Academy of Sciences.




Catalysis in Confined Frameworks


Book Description

Understanding the synthesis and applications of porous solid catalysts Heterogeneous catalysis is a catalytic process in which catalysts and reactants exist in different phases. Heterogeneous catalysis with solid catalysts proceeds through the absorption of substrates and reagents which are liquid or gas, and this is largely dependent on the accessible surface area of the solid which can generate active reaction sites. The synthesis of porous solids is an increasingly productive approach to generating solid catalysts with larger accessible surface area, allowing more efficient catalysis. Catalysis in Confined Frameworks: Synthesis, Characterization, and Applications provides a comprehensive overview of synthesis and use of porous solids as heterogeneous catalysts. It provides detailed analysis of pore engineering, a thorough characterization of the advantages and disadvantages of porous solids as heterogeneous catalysts, and an extensive discussion of applications. The result is a foundational introduction to a cutting-edge field. Catalysis in Confined Frameworks: Synthesis, Characterization, and Applications readers will also find: An editorial team comprised of international experts with extensive experience Detailed discussion of catalyst classes including zeolites, mesoporous aluminosilicates, and more A special focus on size selective catalysis Catalysis in Confined Frameworks: Synthesis, Characterization, and Applications is an essential reference for catalytic chemists, organic chemists, materials scientists, physical chemists, and any researchers or industry professionals working with heterogeneous catalysis.




Vanadium Catalysis


Book Description

Vanadium is one of the more abundant elements in the Earth’s crust and exhibits a wide range of oxidation states in its compounds making it potentially a more sustainable and more economical choice as a catalyst than the noble metals. A wide variety of reactions have been found to be catalysed by homogeneous, supported and heterogeneous vanadium complexes and the number of applications is growing fast. Bringing together the research on the catalytic uses of this element into one essential resource, including theoretical perspectives on proposed mechanisms for vanadium catalysis and an overview of its relevance in biological processes, this book is a useful reference for industrial and academic chemists alike.




Manganese Catalysis in Organic Synthesis


Book Description

Manganese Catalysis in Organic Synthesis A must-read reference for anyone interested in catalyst design and sustainable organic synthesis In Manganese Catalysis in Organic Synthesis, distinguished researcher Jean-Baptiste Sortais delivers an insightful and robust overview of the use of manganese in homogenous catalysis. The editor includes papers from authoritative academics describing the organometallic precursors used to develop manganese catalysts and covers critical applications in organic synthesis, including reduction to oxidation reactions, C-C, C-N, C-X bond formation reactions, cross-coupling reactions, C-H bond activation to dihydroxylation and epoxidation reactions. Manganese Catalysis in Organic Synthesis is a practical resource for every organic chemist in academia and industry with an interest in non-noble metal catalysis, organic synthesis, and sustainable chemistry. It is intuitively and clearly organized, covering the most important synthetic procedures using homogenous manganese catalysts. It is also the ideal companion to works like Cobalt Catalysis in Organic Synthesis, Nickel Catalysis in Organic Synthesis, and Iron Complexes in Catalysis. Readers will also enjoy: Thorough introductions to organometallic manganese compounds in organic synthesis and manganese-catalyzed hydrogenation and hydrogen transfer reactions A comprehensive exploration of manganese-catalyzed hydrogen borrowing reactions and dehydrogenative coupling reactions Practical discussions of manganese-catalyzed hydrosilylation and hydroboration reactions and manganese-catalyzed electro- and photocatalysis transformations In-depth examinations of manganese-catalyzed C-H oxygenation reactions and manganese-catalyzed organometallic C-H activation Insightful treatments of manganese-catalyzed cross-coupling processes and manganese(III) acetate mediated cyclizations Perfect for catalytic, organic, and pharmaceutical chemists, Manganese Catalysis in Organic Synthesis deserves a place in the libraries of researchers and professionals interested in catalyst design and sustainable organic synthesis.







Advanced Green Chemistry - Part 2: From Catalysis To Chemistry Frontiers


Book Description

This book is indexed in Chemical Abstracts ServiceGreen Chemistry has evolved in response to several environmental issues in the second half of the last century, mostly due to the almost freely expanding chemical, petrochemical, and pharmaceutical industries. During the past two decades Green Chemistry grew rapidly and we can now consider this area as a mature and powerful field. Tremendous development has taken place in many important areas including renewable energy and resources, reaction environments, catalysis, synthesis, chemical biology, green polymers, and facile recycling. The combination of Green Chemistry with engineering, biology, toxicology, and physics will lead to novel interdisciplinary systems, which can now lift Green Chemistry to the next, advanced level.The editors have assembled authors among the best specialists of this growing area of research. This collection of reviews and perspectives provides an exciting vision of the more recent developments in Green Chemistry. The contents of this book illustrate the breath of the field and its role to address environmental issues. This volume will serve as a book of reference showing a panoramic view of the field and a preview of its future direction, as well as a book of inspiration for those aiming to further advance its frontiers. This volume emphasizes on the most recent developments in green catalysis, bio-sourced polymers and the study of continental organic matter for a better understanding of the carbon geochemical cycle.




Encyclopedia of Environmental Management, Four Volume Set


Book Description

Winner of an Outstanding Academic Title Award from CHOICE Magazine Encyclopedia of Environmental Management gives a comprehensive overview of environmental problems, their sources, their assessment, and their solutions. Through in-depth entries and a topical table of contents, readers will quickly find answers to questions about specific pollution and management issues. Edited by the esteemed Sven Erik Jørgensen and an advisory board of renowned specialists, this four-volume set shares insights from more than 500 contributors—all experts in their fields. The encyclopedia provides basic knowledge for an integrated and ecologically sound management system. Nearly 400 alphabetical entries cover everything from air, soil, and water pollution to agriculture, energy, global pollution, toxic substances, and general pollution problems. Using a topical table of contents, readers can also search for entries according to the type of problem and the methodology. This allows readers to see the overall picture at a glance and find answers to the core questions: What is the pollution problem, and what are its sources? What is the "big picture," or what background knowledge do we need? How can we diagnose the problem, both qualitatively and quantitatively, using monitoring and ecological models, indicators, and services? How can we solve the problem with environmental technology, ecotechnology, cleaner technology, and environmental legislation? How do we address the problem as part of an integrated management strategy? This accessible encyclopedia examines the entire spectrum of tools available for environmental management. An indispensable resource, it guides environmental managers to find the best possible solutions to the myriad pollution problems they face. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact us to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367 / (email) [email protected] International: (Tel) +44 (0) 20 7017 6062 / (email) [email protected]




Managing Human and Social Systems


Book Description

Bringing together a wealth of knowledge, Environmental Management Handbook, Second Edition, gives a comprehensive overview of environmental problems, their sources, their assessment, and their solutions. Through in-depth entries and a topical table of contents, readers will quickly find answers to questions about environmental problems and their corresponding management issues. This six-volume set is a reimagining of the award-winning Encyclopedia of Environmental Management, published in 2013, and features insights from more than 400 contributors, all experts in their field. The experience, evidence, methods, and models used in studying environmental management are presented here in six stand-alone volumes, arranged along the major environmental systems. Features The first handbook that demonstrates the key processes and provisions for enhancing environmental management Addresses new and cutting-edge topics on ecosystem services, resilience, sustainability, food–energy–water nexus, socio-ecological systems, and more Provides an excellent basic knowledge on environmental systems, explains how these systems function, and offers strategies on how to best manage them Includes the most important problems and solutions facing environmental management today In this sixth volume, Managing Human and Social Systems, the reader is introduced to the general concepts and processes of all the environmental tools and their application to human and social systems. It explains how these systems function and provides strategies on how to best manage them. It serves as an excellent resource for finding basic knowledge on the human and social systems and includes important problems and solutions that environmental managers face today. This book practically demonstrates the key processes, methods, and models used in studying environmental management.




Advances in Heterocyclic Chemistry


Book Description

Advances in Heterocyclic Chemistry, Volume 136 is the latest release in this definitive series in the field of heterocyclic chemistry, one of great importance to organic chemists, polymer chemists, and many biological scientists. Because biology and organic chemistry increasingly intersect, the associated nomenclature is used more frequently in explanations. Written by established authorities in the field from around the world, this comprehensive review combines descriptive synthetic chemistry and mechanistic insight to yield an understanding of how chemistry drives the preparation and useful properties of heterocyclic compounds. - Considered the definitive serial in the field of heterocyclic chemistry - Serves as the go-to reference for organic chemists, polymer chemists and many biological scientists - Provides the latest comprehensive reviews written by established authorities in the field - Combines descriptive synthetic chemistry and mechanistic insights to enhance understanding on how chemistry drives the preparation and useful properties of heterocyclic compounds




Aqueous-phase Catalytic Conversions of Renewable Feedstocks for Sustainable Biorefineries


Book Description

Today, there is growing interest in aqueous-phase catalytic conversions for the valorization of renewable biomass-based feedstocks for biorefineries to produce, in a sustainable way, biofuels, chemicals, power, energy, materials, pharmaceuticals and food. This is because of the highly polar nature of water which makes it an ideal medium to convert polar biomass-based lignocellulose (cellulose, hemicellulose, lignin), with high oxygen content, and their upgraded products such as hydrophilic carbohydrates, platform chemicals and their derivatives. Another reason which makes water the solvent of choice is that water itself is involved either as a reagent or as a byproduct even in large amounts in typical conversions for the valorization of biomass. The obtained intermediates further react in the aqueous medium, often without any separation and purification, to manufacture more valuable products. This results in substantial energy savings, lower emissions and economic benefits. Furthermore, water could act as a catalyst in conversions of biomass-based feedstocks such as in liquefaction reactions under subcritical conditions. Moreover, novel types of catalytic reactivity have been observed in the aqueous solvent, not only with water-soluble transition metal catalytic complexes, but also with conventional heterogeneous catalysts and catalytic nanoparticles in a broad spectrum of different reactions such as, inter alia, aldol condensations and hydrogenation reactions. For example, in the aqueous-phase hydrogenation of the biomass-based key platform chemical levulinic acid into γ-valerolactone and beyond, employing heterogeneous catalysts and nanoparticles the presence of water has a beneficial effect and accelerates the reaction rates, whereas in organic solvents much lower activities were observed. This promotional effect of water in the hydrogenation of levulinic acid was proved by many experimental and theoretical studies using a broad spectrum of different types of catalytic systems.