Functional Materials and Additive Manufacturing


Book Description

Special topic volume with invited peer-reviewed papers only




Functional Materials and Advanced Manufacturing


Book Description

This three-volume set addresses a new knowledge of function materials, their processing, and their characterizations. "Functional and Smart Materials", covered the synthesis and fabrication route of functional and smart materials for universal applications such as material science, mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical, biology, chemistry, civil engineering, and food science. "Advanced Manufacturing and Processing Technology" covers the advanced manufacturing technologies includes coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies for processing of materials for functional applications. "Characterization, Testing, Measurement and Metrology" covered the application of new and advanced characterization techniques to investigate and analysis the processed materials.










Laser Printing of Functional Materials


Book Description

The first book on this hot topic includes such major research areas as printed electronics, sensors, biomaterials and 3D cell printing. Well-structured and with a strong focus on applications, the text is divided in three sections with the first describing the fundamentals of laser transfer. The second provides an overview of the wide variety of materials that can be used for laser transfer processing, while the final section comprehensively discusses a number of practical uses, including printing of electronic materials, printing of 3D structures as well as large-area, high-throughput applications. The book is rounded off by a look at the future for laser printed materials. Invaluable reading for a broad audience ranging from material developers to mechanical engineers, from academic researchers to industrial developers and for those interested in the development of micro-scale additive manufacturing techniques.







Sintering of Functional Materials


Book Description

Powder-based materials and treatment technologies rank high in contemporary scientific-technical progress due to their numerous significant technoeconomic qualities. Sintering of such materials allows saving on materials and lowering the cost price of the product, as well as manufacturing complex composite materials with unique combinations of qualities. Materials of record high values of some physic-mechanical and also biochemical characteristics can be obtained owing to structural peculiarities of super dispersed condition. Sintering of functional materials for innovative perspectives in automotive and aeronautical engineering, space technology, lightweight construction, mechanical engineering, modern design, and many other applications requires established relationship in the materials-process-properties system. Therefore, the industry being interested in understanding theoretical modeling, and control over behavior of such powdered materials has promoted the research activities of this manuscript's authors.




3D Printing for Energy Applications


Book Description

3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.




Development of Materials and Processes for Additive Manufacturing of Multi-Functional Microarchitected Devices


Book Description

Materials and manufacturing are the critical enabler of our technological world. With new materials and advanced manufacturing, new opportunities for advanced application become possible. Additive manufacturing (AM), or three-dimensional (3D) printing, is a relatively new manufacturing process, which relies on building up of parts from raw material. It reduces manufacturing waste, is flexible in part output, and opens new final part form-factors/architectures to be accessible for advanced applications. Light-based AM is well established in its ability to fabricate complex 3D structures whose unique properties exceed or are unfound in natural materials, called metamaterials. These unique 3D structures and other benefits of light-based AM make it of increasing interest for fabrication of functional devices, energy storage, sensors, and actuators among others. However, the available materials compatible with light-based AM, and AM in general, is limited. Specific material and processing limitations, viscosity, light absorption, and their underlying chemistry exclude the vast majority of materials from use in light-based AM. The majority of usable materials are on acrylic, vinyl, and thiol-based organic polymers whereas most functional materials are inorganic and not directly compatible.This dissertation focuses on the development of new materials and processes to allow the light-based AM fabrication of functional materials. This includes graphene energy storage devices, patterned 3D deposition for freeform electronics of multiple materials (conductors, dielectric, magnetic), and high-temperature ceramics for lightweight structural electronics in extreme applications. This dissertation lays the foundation for integrating light-based AM methods to electronic device applications that incorporates conducting and dielectric materials in 3D. Further development can allow advanced antenna, bioelectronics, and structural electronics.