Fundamental Concepts of Inorganic Chemistry (Volume 5)


Book Description

Volume 5 covers metal complexes: reaction mechanism (ligand substitution, isomerisation, racemisation, electron transfer and photochemical reactions




Fundamentals of Inorganic Glasses


Book Description

Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study







Essentials of Inorganic Chemistry


Book Description

A comprehensive introduction to inorganic chemistry and, specifically, the science of metal-based drugs, Essentials of Inorganic Chemistry describes the basics of inorganic chemistry, including organometallic chemistry and radiochemistry, from a pharmaceutical perspective. Written for students of pharmacy and pharmacology, pharmaceutical sciences, medicinal chemistry and other health-care related subjects, this accessible text introduces chemical principles with relevant pharmaceutical examples rather than as stand-alone concepts, allowing students to see the relevance of this subject for their future professions. It includes exercises and case studies.




Basic Principles of Inorganic Chemistry


Book Description

General chemistry textbooks are usually lengthy and present chemistry to the student as an unconnected list of facts. In inorganic chemistry, emphasis should be placed on the connections between valence shell electron configuration and the physical and chemical properties of the element. Basic Principles of Inorganic Chemistry: Making the Connections is a short, concise book that emphasises these connections, in particular the chemistry of the Main Group compounds. With reference to chemical properties, Lewis Structures, stoichiometry and spider diagrams, students will be able to predict or calculate the chemistry of simple polyatomic compounds from the valence shell configuration and will no longer be required to memorise vast amounts of factual chemistry. This book is ideal for students taking chemistry as a subsidiary subject as well as honours degree students.




Comprehensive Inorganic Chemistry II


Book Description

Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973




Electrons, Atoms, and Molecules in Inorganic Chemistry


Book Description

Electrons, Atoms, and Molecules in Inorganic Chemistry: A Worked Examples Approach builds from fundamental units into molecules, to provide the reader with a full understanding of inorganic chemistry concepts through worked examples and full color illustrations. The book uniquely discusses failures as well as research success stories. Worked problems include a variety of types of chemical and physical data, illustrating the interdependence of issues. This text contains a bibliography providing access to important review articles and papers of relevance, as well as summaries of leading articles and reviews at the end of each chapter so interested readers can readily consult the original literature. Suitable as a professional reference for researchers in a variety of fields, as well as course use and self-study. The book offers valuable information to fill an important gap in the field. - Incorporates questions and answers to assist readers in understanding a variety of problem types - Includes detailed explanations and developed practical approaches for solving real chemical problems - Includes a range of example levels, from classic and simple for basic concepts to complex questions for more sophisticated topics - Covers the full range of topics in inorganic chemistry: electrons and wave-particle duality, electrons in atoms, chemical binding, molecular symmetry, theories of bonding, valence bond theory, VSEPR theory, orbital hybridization, molecular orbital theory, crystal field theory, ligand field theory, electronic spectroscopy, vibrational and rotational spectroscopy




Inorganic Chemistry


Book Description

This textbook provides essential information for students of inorganic chemistry or for chemists pursuing self-study. The presentation of topics is made with an effort to be clear and concise so that the book is portable and user friendly. Inorganic Chemistry 2E is divided into five major themes (structure, condensed phases, solution chemistry, main group and coordination compounds) with several chapters in each. There is a logical progression from atomic structure to molecular structure to properties of substances based on molecular structures, to behavior of solids, etc. The author emphasizes fundamental principles-including molecular structure, acid-base chemistry, coordination chemistry, ligand field theory, and solid state chemistry -and presents topics in a clear, concise manner. There is a reinforcement of basic principles throughout the book. For example, the hard-soft interaction principle is used to explain hydrogen bond strengths, strengths of acids and bases, stability of coordination compounds, etc. The book contains a balance of topics in theoretical and descriptive chemistry. New to this Edition: New and improved illustrations including symmetry and 3D molecular orbital representationsExpanded coverage of spectroscopy, instrumental techniques, organometallic and bio-inorganic chemistryMore in-text worked-out examples to encourage active learning and to prepare students for their exams . Concise coverage maximizes student understanding and minimizes the inclusion of details students are unlikely to use. . Discussion of elements begins with survey chapters focused on the main groups, while later chapters cover the elements in greater detail. . Each chapter opens with narrative introductions and includes figures, tables, and end-of-chapter problem sets.




Arrow Pushing in Inorganic Chemistry


Book Description

Involved as it is with 95% of the periodic table, inorganic chemistry is one of the foundational subjects of scientific study. Inorganic catalysts are used in crucial industrial processes and the field, to a significant extent, also forms the basis of nanotechnology. Unfortunately, the subject is not a popular one for undergraduates. This book aims to take a step to change this state of affairs by presenting a mechanistic, logical introduction to the subject. Organic teaching places heavy emphasis on reaction mechanisms - "arrow-pushing" - and the authors of this book have found that a mechanistic approach works just as well for elementary inorganic chemistry. As opposed to listening to formal lectures or learning the material by heart, by teaching students to recognize common inorganic species as electrophiles and nucleophiles, coupled with organic-style arrow-pushing, this book serves as a gentle and stimulating introduction to inorganic chemistry, providing students with the knowledge and opportunity to solve inorganic reaction mechanisms. • The first book to apply the arrow-pushing method to inorganic chemistry teaching • With the reaction mechanisms approach ("arrow-pushing"), students will no longer have to rely on memorization as a device for learning this subject, but will instead have a logical foundation for this area of study • Teaches students to recognize common inorganic species as electrophiles and nucleophiles, coupled with organic-style arrow-pushing • Provides a degree of integration with what students learn in organic chemistry, facilitating learning of this subject • Serves as an invaluable companion to any introductory inorganic chemistry textbook