Fundamental Physicochemical Properties of Germanene-related Materials


Book Description

Fundamental Physicochemical Properties of Germanene-related Materials: A Theoretical Perspective provides a comprehensive review of germanene-related materials to help users understand the essential properties of these compounds. The book covers various germanium complex states such as germanium oxides, germanium on Ag, germanium/silicon composites and germanium compounds. Diverse phenomena are clearly illustrated using the most outstanding candidates of the germanium/germanene-related material. Delicate simulations and analyses are thoroughly demonstrated under the first-principles method, being fully assisted by phenomenological models. Macroscopic phenomena in chemical systems, including their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry are fully covered. Germanium-based materials play critical roles in the basic and applied sciences, as clearly revealed in other group-IV and group-V condensed-matter systems. Their atomic configurations are suitable for creating the active chemical bonding among the identical and/or different nearest-neighboring atoms leading to diverse physical/chemical/material environments. - Provides a comprehensive review of germanene-related materials with a physicochemical and theoretical foundation that is useful for readers in understanding the essential properties of these compounds - Presents a unique theoretical framework under single and multi-hybridization theory - Contains significant combinations with phenomenological and experimental measurements - Focuses on the study of macroscopic phenomena in chemical systems in terms of their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry




Defects in Two-Dimensional Materials


Book Description

Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials




Chemical Modifications Of Graphene-like Materials


Book Description

Graphene-like materials have attracted considerable interest in the fields of condensed-matter physics, chemistry, and materials science due to their interesting properties as well as the promise of a broad range of applications in energy storage, electronic, optoelectronic, and photonic devices.The contents present the diverse phenomena under development in the grand quasiparticle framework through the first-principles calculations. The critical mechanisms, the orbital hybridizations and spin configurations of graphene-like materials through the chemical adsorptions, intercalations, substitutions, decorations, and heterojunctions, are taken into account. Specifically, the hydrogen-, oxygen-, transition-metal- and rare-earth-dependent compounds are thoroughly explored for the unusual spin distributions. The developed theoretical framework yields concise physical, chemical, and material pictures. The delicate evaluations are thoroughly conducted on the optimal lattices, the atom- and spin-dominated energy bands, the orbital-dependent sub-envelope functions, the spatial charge distributions, the atom- orbital- and spin-projected density of states, the spin densities, the magnetic moments, and the rich optical excitations. All consistent quantities are successfully identified by the multi-orbital hybridizations in various chemical bonds and guest- and host-induced spin configurations.The scope of the book is sufficiently broad and deep in terms of the geometric, electronic, magnetic, and optical properties of 3D, 2D, 1D, and 0D graphene-like materials with different kinds of chemical modifications. How to evaluate and analyze the first-principles results is discussed in detail. The development of the theoretical framework, which can present the diversified physical, chemical, and material phenomena, is obviously illustrated for each unusual condensed-matter system. To achieve concise physical and chemical pictures, the direct and close combinations of the numerical simulations and the phenomenological models are made frequently available via thorough discussions. It provides an obvious strategy for the theoretical framework, very useful for science and engineering communities.




Fundamentals of Low Dimensional Magnets


Book Description

A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets and magnetic materials. The basic concepts, various synthetic approaches, characterizations, and mathematical understanding of nanomaterials are provided. Some fundamental applications of 1D, 2D, and 3D materials are covered. This book provides the fundamentals of low-dimensional magnets along with synthesis, theories, structure-property relations, and applications of ferromagnetic nanomaterials. This book broadens our fundamental understanding of ferromagnetism and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity.




Advances in Nanomaterials


Book Description

This exploratory textbook starts with fundamentals that satisfy the needs of a diverse group of educators, researchers and students aspiring to engage in research and engineering of nanomaterials. It bridges the gap between undergraduate students in science and engineering who have not yet chosen a specific career path, graduate students still considering different disciplines and the cross-cutting scientific topics in nanomaterials. It extends to methods of common practice in the field, spanning experimental, and theoretical techniques. The extensive use of nanomaterials, such as carbon nanotubes, in the future of global technological solutions underscores the relevance of this text aimed at students and researchers with a range of interests. “Advances in Nanomaterials: Fundamentals, Properties and Applications,” is ideal for senior undergraduate and graduate students, faculty and general science enthusiasts interested in nanomaterials across contexts ranging from solar energy, structural engineering, to medical devices, to semiconductors.




Diverse Quantization Phenomena in Layered Materials


Book Description

This monograph offers a comprehensive overview of diverse quantization phenomena in layered materials, covering current mainstream experimental and theoretical research studies, and presenting essential properties of layered materials along with a wealth of figures. This book illustrates commonly used synthesis methods of these 2D materials and compares the calculated results and experimental measurements, including novel features not yet reported. The book also discusses experimental measurements of magnetic quantization, theoretical modeling for studying systems and covers diversified magneto-electronic properties, magneto-optical selection rules, unusual quantum Hall conductivities, and single- and many-particle magneto-Coulomb excitations. Rich and unique behaviors are clearly revealed in few-layer graphene systems with distinct stacking configuration, stacking-modulated structures, silicon-doped lattices, bilayer silicene/germanene systems with the bottom-top and bottom-bottom buckling structures, monolayer and bilayer phosphorene systems, and quantum topological insulators. The generalized tight-binding model, the static and dynamic Kubo formulas, and the random-phase approximation are developed/modified to thoroughly explore the fundamental properties and propose the concise physical pictures. Different high-resolution experimental measurements are discussed in detail, and they are consistent with the theoretical predictions. Aimed at readers working in materials science, physics, and engineering this book should be useful for potential applications in energy storage, electronic devices, and optoelectronic devices.




Physical Properties of Materials, Third Edition


Book Description

Designed for advanced undergraduate students and as a useful reference book for materials researchers, Physical Properties of Materials, Third Edition establishes the principles that control the optical, thermal, electronic, magnetic, and mechanical properties of materials. Using an atomic and molecular approach, this introduction to materials science offers readers a wide-ranging survey of the field and a basis to understand future materials. The author incorporates comments on applications of materials science, extensive references to the contemporary and classic literature, and 350 end-of-chapter problems. In addition, unique tutorials allow students to apply the principles to understand applications, such as photocopying, magnetic devices, fiber optics, and more. This fully revised and updated Third Edition includes new materials and processes, such as topological insulators, 3-D printing, and more information on nanomaterials. The new edition also now adds Learning Goals at the end of each chapter and a Glossary with more than 500 entries for quick reference.




Fundamentals and Sensing Applications of 2D Materials


Book Description

Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. - Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system - Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more - Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials




Geometric and Electronic Properties of Graphene-Related Systems


Book Description

Due to its physical, chemical, and material properties, graphene has been widely studied both theoretically and experimentally since it was first synthesized in 2004. This book explores in detail the most up-to-date research in graphene-related systems, including few-layer graphene, sliding bilayer graphene, rippled graphene, carbon nanotubes, and adatom-doped graphene, among others. It focuses on the structure-, stacking-, layer-, orbital-, spin- and adatom-dependent essential properties, in which single- and multi-orbital chemical bondings can account for diverse phenomena. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes is excellent for graduate students and researchers, but understandable to undergraduates. The detailed theoretical framework developed in this book can be used in the future characterization of emergent materials.




2D Monoelemental Materials (Xenes) and Related Technologies


Book Description

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.