Fundamentals of Electrochemical Growth


Book Description

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Fundamentals of Electrochemical Growth: From UPD to Microstructures ¿ Symposium in Memory of Prof. Evgeni Budevski¿, held during the 216th meeting of The Electrochemical Society, in Vienna, Austria from October 4 to 9, 2009.













Fundamentals of Electrochemical Deposition


Book Description

Excellent teaching and resource material . . . it is concise, coherently structured, and easy to read . . . highly recommended for students, engineers, and researchers in all related fields." -Corrosion on the First Edition of Fundamentals of Electrochemical Deposition From computer hardware to automobiles, medical diagnostics to aerospace, electrochemical deposition plays a crucial role in an array of key industries. Fundamentals of Electrochemical Deposition, Second Edition is a comprehensive introduction to one of today's most exciting and rapidly evolving fields of practical knowledge. The most authoritative introduction to the field so far, the book presents detailed coverage of the full range of electrochemical deposition processes and technologies, including: * Metal-solution interphase * Charge transfer across an interphase * Formation of an equilibrium electrode potential * Nucleation and growth of thin films * Kinetics and mechanisms of electrodeposition * Electroless deposition * In situ characterization of deposition processes * Structure and properties of deposits * Multilayered and composite thin films * Interdiffusion in thin film * Applications in the semiconductor industry and the field of medicine This new edition updates the prior edition to address the new developments in the science and its applications, with new chapters on innovative applications of electrochemical deposition in semiconductor technology, magnetism and microelectronics, and medical instrumentation. Added coverage includes such topics as binding energy, nanoclusters, atomic force, and scanning tunneling microscopy.Example problems at the end of chapters and other features clarify and improve understanding of the material. Written by an author team with extensive experience in both industry and academe, this reference and text provides a well-rounded introduction to the field for students, as well as a means for professional chemists, engineers, and technicians to expand and sharpen their skills in using the technology.







Electrochemical Phase Formation and Growth


Book Description

Electrochemical processes and methods are basic to many important scientific disciplines, materials science and nanotechnology being only two keywords. For the first time in more than twenty years this volume presents a critical survey of the foundations, methodology and applications of electrochemical phase formation and growth processes. Written by a team of three internationally renowned authors, it is an invaluable source of information for all scientists concerned with electrocrystallization of metals or the in-situ characterization of electron-conducting surfaces. Not only the numerous illustrations (partly in colour) but also the vast number of references covering the literature up to and including 1995 make this volume indispensable for every laboratory working in electrochemical or materials science.







Electrocrystallization


Book Description

“Electrocrystallization is a particular case of a first order phase transition” and “Electrocrystallization is a particular case of electrochemical kinetics” are two statements that I have heard and read many times. I do not like them for a simple reason: it is annoying to see that the subject to which you have devoted more than 30 years of your life may be considered as a “particular case”. Therefore, I decided to write this book in which Electrocrystallization is the main subject. To become competent in the field of Electrocrystallization one should possess knowledge of Electrochemistry, Nucleation and Crystal Growth, which means knowledge of Physical Chemistry, Physics and Mathematics. That is certainly difficult and in most cases those who study Electrocrystallization are either more electrochemists, or more physical chemists, or more physicists, very often depending on whom has been their teacher. Of course, there are scientists who consider themselves equally good in all those fields. Very frequently they are, unfortunately, equally bad. The difference is essential but strange enough, it is sometimes not easy to realize the truth immediately.