Fundamentals of Microwave Transmission Lines


Book Description

An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.




RF and Microwave Engineering


Book Description

This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given in order to deepen the reader’s understanding of the chapter material and practice the new competences. Solutions are available on the author’s website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas Uses various examples of modern RF tools that show how the methods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http:\\www.fh-dortmund.de\gustrau_rf_textbook) This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.




Artificial Transmission Lines for RF and Microwave Applications


Book Description

This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology. This book is devoted to the analysis, study and applications of artificial transmission lines mostly implemented by means of a host line conveniently modified (e.g., with modulation of transverse dimensions, with etched patterns in the metallic layers, etc.) or with reactive loading, in order to achieve novel device functionalities, superior performance, and/or reduced size. The author begins with an introductory chapter dedicated to the fundamentals of planar transmission lines. Chapter 2 is focused on artificial transmission lines based on periodic structures (including non-uniform transmission lines and reactively-loaded lines), and provides a comprehensive analysis of the coupled mode theory. Chapters 3 and 4 are dedicated to artificial transmission lines inspired by metamaterials, or based on metamaterial concepts. These chapters include the main practical implementations of such lines and their circuit models, and a wide overview of their RF/microwave applications (including passive and active circuits and antennas). Chapter 5 focuses on reconfigurable devices based on tunable artificial lines, and on non-linear transmission lines. The chapter also introduces several materials and components to achieve tuning, including diode varactors, RF-MEMS, ferroelectrics, and liquid crystals. Finally, Chapter 6 covers other advanced transmission lines and wave guiding structures, such as electroinductive-/magnetoinductive-wave lines, common-mode suppressed balanced lines, lattice-network artificial lines, and substrate integrated waveguides. Artificial Transmission Lines for RF and Microwave Applications provides an in-depth analysis and discussion of artificial transmission lines, including design guidelines that can be useful to researchers, engineers and students.




Fundamentals of Microwave and RF Design


Book Description

Fundamentals of Microwave and RF Design enables mastery of the essential concepts required to cross the barriers to a successful career in microwave and RF design. Extensive treatment of scattering parameters, that naturally describe power flow, and of Smith-chart-based design procedures prepare the student for success. The emphasis is on design at the module level and on covering the whole range of microwave functions available. The orientation is towards using microstrip transmission line technologies and on gaining essential mathematical, graphical and design skills for module design proficiency. This book is derived from a multi volume comprehensive book series, Microwave and RF Design, Volumes 1-5, with the emphasis in this book being on presenting the fundamental materials required to gain entry to RF and microwave design. This book closely parallels the companion series that can be consulted for in-depth analysis with referencing of the book series being familiar and welcoming. Key Features * A companion volume to a comprehensive series on microwave and RF design * Open access ebook editions are hosted by NC State University Libraries at https://repository.lib.ncsu.edu/handle/1840.20/36776 * 59 worked examples * An average of 24 exercises per chapter * Answers to selected exercises * Emphasis on module-level design using microstrip technologies * Extensive treatment of design using Smith charts * A parallel companion book series provides a detailed reference resource




Microwave Engineering


Book Description

Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits Addresses scattering parameters and their properties, as well as planar structures including striplines and microstrips Considers the limitations of conventional tubes, behavior of charged particles in different fields, and the concept of velocity modulation Based on the author’s own class notes, Microwave Engineering: Concepts and Fundamentals consists of 16 chapters featuring homework problems, references, and numerical examples. PowerPoint® slides and MATLAB®-based solutions are available with qualifying course adoption.




Introduction To Modern Planar Transmission Lines


Book Description

Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models. Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study Introduction to Modern Planar Transmission Lines is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.




Design of Nonplanar Microstrip Antennas and Transmission Lines


Book Description

A one-stop reference to the design and analysis of nonplanar microstrip structures. Owing to their conformal capability, nonplanar microstrip antennas and transmission lines have been intensely investigated over the past decade. Yet most of the accumulated research has been too scattered across the literature to be useful to scientists and engineers working on these curved structures. Now, antenna expert Kin-Lu Wong compiles and organizes the latest research results and other cutting-edge developments into an extensive survey of the characteristics of microstrip antennas mounted on canonical nonplanar surfaces. Demonstrating a variety of theoretical techniques and deducing the general characteristics of nonplanar microstrip antennas from calculated results, Wong thoroughly addresses the problems of cylindrical, spherical, and conical structures and gives readers powerful design and optimization tools. Up-to-date topics range from specific applications of spherical and conical microstrip arrays to the curvature effects on the analysis of cylindrical microstrip lines and coplanar waveguides. With 256 illustrations and an exhaustive list of references, Design of Nonplanar Microstrip Antennas and Transmission Lines is an indispensable guide for antenna designers in wireless and personal communications and in radar systems, and an invaluable reference for researchers and students interested in this important technology.




Microwave and RF Design, Volume 2


Book Description

Microwave and RF Design: Transmission Lines builds on the concepts of forward- and backward-traveling waves. Many examples are included of advanced techniques for analyzing and designing transmission line networks with microstrip lines primarily used in design examples. Coupled-lines are an important functional element in microwave circuits, and circuit equivalents of coupled lines are introduced as fundamental building blocks in design. The text and examples introduce the often hidden design requirements of mitigating parasitic effects and eliminating unwanted modes of operation. This book is suitable as both an undergraduate and graduate textbook, as well as a career-long reference book. Key Features * The second volume of a comprehensive series on microwave and RF design * Open access ebook editions are hosted by NC State University Libraries at https://repository.lib.ncsu.edu/handle/1840.20/36776 * 56 worked examples * An average of 31 exercises per chapter * Answers to selected exercises * Focus on planar lines including microstrip * A companion book, Fundamentals of Microwave and RF Design, is suitable as a comprehensive undergraduate textbook on microwave engineering




FOUNDATIONS FOR MICROWAVE ENGINEERING, 2ND ED


Book Description

About The Book: The book covers the major topics of microwave engineering. Its presentation defines the accepted standard for both advanced undergraduate and graduate level courses on microwave engineering. It is an essential reference book for the practicing microwave engineer




Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures


Book Description

A one-stop reference to the major techniques for analyzing microwave planar transmission line structures The last two decades have seen important progress in the development of methods for the analysis of microwave and millimeter-wave passive structures, which contributed greatly to microwave integrated circuit design while also stimulating the development of new planar transmission lines. This timely and authoritative work introduces microwave engineers to the most commonly used techniques for analyzing microwave planar transmission line structures. Designed to be easily accessible to readers with only a fundamental background in electromagnetic theory, the book provides clear explanations of the theory and applications of Green's function, the conformal-mapping method, spectral domain methods, variational methods, and the mode-matching methods. Coverage for each method is self-contained and supplemented with problems and solutions as well as useful figures. In addition to providing detailed formulations of the methods under discussion, this highly practical book also demonstrates how to apply the principles of electromagnetic theory to the analysis of microwave boundary value problems, customize methods for specific needs, and develop new techniques. Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures is an excellent working resource for anyone involved in the design and engineering of RF, microwave, and millimeter-wave integrated circuits.