Fungi in Bioremediation


Book Description

An authoritative account of the application of fungi to the treatment of environmental pollution.




Mycoremediation


Book Description

The first encyclopedic examination of the application of fungi in bioremediation, this book gives an overview of the science today and covers all aspects of this multidisciplinary field. It provides a solid foundation in the fundamentals and progresses to practical applications. It features step-by-step guidance for a myriad of effective techniques to identify, select, and apply fungi towards the remediation of contaminated sites.




Fungal Bioremediation


Book Description

This book highlights the role fungi play in bioremediation, as well as the mechanisms and enzymes involved in this process. It covers the application of bioremediation with fungi in polluted sites and gives a wide overview of the main applications of remediation, such as degradation of xenobiotics, gaseous pollutants, and metal reduction. The book explains the degradation of emergent pollutants and radioactive compounds by fungi, which is relevant to the current pollution problems that have been studied over the last few decades. The book also describes the most advanced techniques and tools that are currently used in this field of study.




Microbial Biodegradation and Bioremediation


Book Description

Microbial Biodegradation and Bioremediation brings together experts in relevant fields to describe the successful application of microbes and their derivatives for bioremediation of potentially toxic and relatively novel compounds. This single-source reference encompasses all categories of pollutants and their applications in a convenient, comprehensive package. Our natural biodiversity and environment is in danger due to the release of continuously emerging potential pollutants by anthropogenic activities. Though many attempts have been made to eradicate and remediate these noxious elements, every day thousands of xenobiotics of relatively new entities emerge, thus worsening the situation. Primitive microorganisms are highly adaptable to toxic environments, and can reduce the load of toxic elements by their successful transformation and remediation. - Describes many novel approaches of microbial bioremediation including genetic engineering, metagenomics, microbial fuel cell technology, biosurfactants and biofilm-based bioremediation - Introduces relatively new hazardous elements and their bioremediation practices including oil spills, military waste water, greenhouse gases, polythene wastes, and more - Provides the most advanced techniques in the field of bioremediation, including insilico approach, microbes as pollution indicators, use of bioreactors, techniques of pollution monitoring, and more




Soil Bioremediation


Book Description

SOIL BIOREMEDIATION A practical guide to the environmentally sustainable bioremediation of soil Soil Bioremediation: An Approach Towards Sustainable Technology provides the first comprehensive discussion of sustainable and effective techniques for soil bioremediation involving microbes. Presenting established and updated research on emerging trends in bioremediation, this book provides contributions from both experimental and numerical researchers who provide reports on significant field trials. Soil Bioremediation instructs the reader on several different environmentally friendly bioremediation techniques, including: Bio-sorption Bio-augmentation Bio-stimulation Emphasizing molecular approaches and biosynthetic pathways of microbes, this one-of-a-kind reference focuses heavily on the role of microbes in the degradation and removal of xenobiotic substances from the environment and presents a unique management and conservation perspective in the field of environmental microbiology. Soil Bioremediation is perfect for undergraduate students in the fields of environmental science, microbiology, limnology, freshwater ecology and microbial biotechnology. It is also invaluable for researchers and scientists working in the areas of environmental science, environmental microbiology, and waste management.




Advances in Applied Bioremediation


Book Description

Bioremediation is a rapidly advancing field and the technology has been applied successfully to remediate many contaminated sites. The goal of every soil remediation method is to enhance the degradation, transformation, or detoxification of pollutants and to protect, maintain and sustain environmental quality. Advances in our understanding of the ecology of microbial communities capable of breaking down various pollutants and the molecular and biochemical mechanisms by which biodegradation occurs have helped us in developing practical soil bioremediation strategies. Chapters dealing with the application of biological methods to soil remediation are contributed from experts – authorities in the area of environmental science including microbiology and molecular biology – from academic institutions and industry.




Environmental Bioremediation Technologies


Book Description

Bioremediation is an eco-friendly, cost-effective and natural technology targeted to remove heavy metals, radionuclides, xenobiotic compounds, organic waste, pesticides etc. from contaminated sites or industrial discharges through biological means. Since this technology is used in in-situ conditions, it does not physically disturb the site unlike conventional methods i.e. chemical or mechanical methods.




Laccases in Bioremediation and Waste Valorisation


Book Description

This Microbiology Monographs volume covers the latest advances in laccase applications in bioremediation and waste valorisation. The first three chapters provide a comprehensive introduction to fungal and bacterial laccases (the two most important enzyme groups from an application viewpoint) and their practical use in bioremediation and lignocellulosic waste valorisation. Subsequent chapters discuss possible combinations of laccases and further potentially collaborating enzymes, and offer in-depth insights into laccase immobilisation for wastewater treatment and environmental biosensor applications of laccases. Lastly, the book addresses the quest for enzymes with improved and better-fitting properties, covering laccase engineering by directed and computational evolution, and novel enzymes from extreme environments. As such, it is a fascinating read for microbiologists in both industry and academia.




Bioremediation of Agricultural Soils


Book Description

The quality of agricultural soils are always under threat from chemical contaminants, which ultimately affect the productivity and safety of crops. Besides agrochemicals, a new generation of substances invades the soil through irrigation with reclaimed wastewater and pollutants of organic origin such as sewage sludge or cattle manure. Emerging pollutants such as pharmaceuticals, nanomaterials and microplastics are now present in agricultural soils, but the understanding of their impact on soil quality is still limited. With focus on in situ bioremediation, this book provides an exhaustive analysis of the current biological methodologies for recovering polluted agricultural soils as well as monitoring the effectiveness of bioremediation.




Marine Fungi


Book Description

Marine fungi play a major role in marine and mangrove ecosystems. Understanding how higher fungi with their spectrum of cellulolytic and ligninolytic enzymes degrade wood tissue, while labyrinthuloids and thraustochytrids further contribute to the dissolved organic matter entering the open ocean is essential to marine ecology. This work provides an overview of marine fungi including morphology and ultrastructure, phylogeny, biogeography and biodiversity. Increasingly, biotechnology is also turning to these organisms to develop new bioactive compounds and to address problems such as decomposition of materials in the ocean and bioremediation of oil spills. These potential applications of marine fungi are also treated. In the light of massive marine oil spills in the past years, the importance of understanding marine fungi and their role in the food chain cannot be underestimated.