GaAs Electronic Materials and Devices


Book Description

In almost every sector of the electronics industry the application of GaAs (Gallium Arsenide) can deliver a major impact on system performance. For example, discrete GaAs HEMT amplifiers are the enabling technology for the billion dollar satellite TV industry. High fidelity GaAs digital ICs perform essential functions in advanced telecommunications switching equipment. Many of the latest generation of mobile telephones are powered by high efficiency GaAs amplifiers. Computer manufacturers use GaAs logic to support high speed microprocessors such as Intel's Pentium and reflecting its origins, GaAs is a vital component in dozens of military systems. As the industry steadily expands into new appplications it faces many key issues. This report provides a comprehensive guide and reference to the development of the GaAs electronics industry incorporating analysis of global markets, technologies and industry structure. It is designed to provide key information to users and manufacturers of GaAs substrates and devices.




GaAs High-Speed Devices


Book Description

The performance of high-speed semiconductor devices—the genius driving digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics—is inextricably linked to the unique physical and electrical properties of gallium arsenide. Once viewed as a novel alternative to silicon, gallium arsenide has swiftly moved into the forefront of the leading high-tech industries as an irreplaceable material in component fabrication. GaAs High-Speed Devices provides a comprehensive, state-of-the-science look at the phenomenally expansive range of engineering devices gallium arsenide has made possible—as well as the fabrication methods, operating principles, device models, novel device designs, and the material properties and physics of GaAs that are so keenly integral to their success. In a clear five-part format, the book systematically examines each of these aspects of GaAs device technology, forming the first authoritative study to consider so many important aspects at once and in such detail. Beginning with chapter 2 of part one, the book discusses such basic subjects as gallium arsenide materials and crystal properties, electron energy band structures, hole and electron transport, crystal growth of GaAs from the melt and defect density analysis. Part two describes the fabrication process of gallium arsenide devices and integrated circuits, shedding light, in chapter 3, on epitaxial growth processes, molecular beam epitaxy, and metal organic chemical vapor deposition techniques. Chapter 4 provides an introduction to wafer cleaning techniques and environment control, wet etching methods and chemicals, and dry etching systems, including reactive ion etching, focused ion beam, and laser assisted methods. Chapter 5 provides a clear overview of photolithography and nonoptical lithography techniques that include electron beam, x-ray, and ion beam lithography systems. The advances in fabrication techniques described in previous chapters necessitate an examination of low-dimension device physics, which is carried on in detail in chapter 6 of part three. Part four includes a discussion of innovative device design and operating principles which deepens and elaborates the ideas introduced in chapter 1. Key areas such as metal-semiconductor contact systems, Schottky Barrier and ohmic contact formation and reliability studies are examined in chapter 7. A detailed discussion of metal semiconductor field-effect transistors, the fabrication technology, and models and parameter extraction for device analyses occurs in chapter 8. The fifth part of the book progresses to an up-to-date discussion of heterostructure field-effect (HEMT in chapter 9), potential-effect (HBT in chapter 10), and quantum-effect devices (chapters 11 and 12), all of which are certain to have a major impact on high-speed integrated circuits and optoelectronic integrated circuit (OEIC) applications. Every facet of GaAs device technology is placed firmly in a historical context, allowing readers to see instantly the significant developmental changes that have shaped it. Featuring a look at devices still under development and device structures not yet found in the literature, GaAs High-Speed Devices also provides a valuable glimpse into the newest innovations at the center of the latest GaAs technology. An essential text for electrical engineers, materials scientists, physicists, and students, GaAs High-Speed Devices offers the first comprehensive and up-to-date look at these formidable 21st century tools. The unique physical and electrical properties of gallium arsenide has revolutionized the hardware essential to digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics. GaAs High-Speed Devices provides the first fully comprehensive look at the enormous range of engineering devices gallium arsenide has made possible as well as the backbone of the technology—ication methods, operating principles, and the materials properties and physics of GaAs—device models and novel device designs. Featuring a clear, six-part format, the book covers: GaAs materials and crystal properties Fabrication processes of GaAs devices and integrated circuits Electron beam, x-ray, and ion beam lithography systems Metal-semiconductor contact systems Heterostructure field-effect, potential-effect, and quantum-effect devices GaAs Microwave Monolithic Integrated Circuits and Digital Integrated Circuits In addition, this comprehensive volume places every facet of the technology in an historical context and gives readers an unusual glimpse at devices still under development and device structures not yet found in the literature.




Gallium Arsenide, Electronics Materials and Devices. A Strategic Study of Markets, Technologies and Companies Worldwide 1999-2004


Book Description

The third edition of this highly respected market study provides a detailed insight into the global developments of the GaAs industry to 2004, and the implications for both suppliers and users of GaAs technology. The report has been completely revised and updated with a new chapter added on competitive technologies. The report also supplies market analysis by component type and application sectors. For a PDF version of the report please call Tina Enright on +44 (0) 1865 843008 for price details.




Fabrication of GaAs Devices


Book Description

This book provides fundamental and practical information on all aspects of GaAs processing and gives pragmatic advice on cleaning and passivation, wet and dry etching and photolithography. Other topics covered include device performance for HBTs (Heterojunction Bipolar Transistors) and FETs (Field Effect Transistors), how these relate to processing choices, and special processing issues such as wet oxidation, which are especially important in optoelectronic devices. This book is suitable for both new and practising engineers.










GaAs Devices and Circuits


Book Description

GaAs devices and integrated circuits have emerged as leading contenders for ultra-high-speed applications. This book is intended to be a reference for a rapidly growing GaAs community of researchers and graduate students. It was written over several years and parts of it were used for courses on GaAs devices and integrated circuits and on heterojunction GaAs devices developed and taught at the University of Minnesota. Many people helped me in writing this book. I would like to express my deep gratitude to Professor Lester Eastman of Cornell University, whose ideas and thoughts inspired me and helped to determine the direction of my research work for many years. I also benefited from numerous discussions with his students and associates and from the very atmosphere of the pursuit of excellence which exists in his group. I would like to thank my former and present co-workers and colleagues-Drs. Levinstein and Gelmont of the A. F. Ioffe Institute of Physics and Technology, Professor Melvin Shaw of Wayne State University, Dr. Kastalsky of Bell Communi cations, Professor Gary Robinson of Colorado State University, Professor Tony Valois, and Dr. Tim Drummond of Sandia Labs-for their contributions to our joint research and for valuable discussions. My special thanks to Professor Morko.;, for his help, his ideas, and the example set by his pioneering work. Since 1978 I have been working with engineers from Honeywell, Inc.-Drs.




Electronic Materials Science


Book Description

For an advanced undergrad/first grad course in materials science, covering thin film materials.




The MOCVD Challenge


Book Description

The MOCVD Challenge: Volume 2, A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications focuses on GaAs systems and devices grown by MOCVD, specifically MOCVD growth of GaAs and related alloys and GaInP for photonic and electronic applications. Along with Volume 1, this book provides a personal account of the author's own pioneering research, an authoritative overview of the development of the MOCVD technique, and the technique's impact on the development of new materials, devices, and their applications. Coverage begins with an introduction to III-V compounds and devices and growth techniques for multilayers and heterostructures. The book then details how an MOCVD system works and how design affects material growth and sourcing of precursor materials. It also examines ^Iin- and ^Iex-situ growth techniques, with the differential reflectivity treatment applied to lattice matched and mis-matched conditions. The author gives an in-depth treatment of the GaInPGaAs system, including optical investigations of quantum wells and superlattices. The book concludes with an up-to-date discussion of the current use, novel developments, and future potential for optical devices, GaAs-based lasers and heterojunctions, and optoelectronic integrated circuits. The MOCVD Challenge is an invaluable introduction and guide for researchers in materials science, applied physics, and electrical engineering, who study the properties and applications of compound (III-V) semiconductor materials. Professor Manijeh Razeghi is director of the Center for Quantum Devices at Northwestern University and leads an internationally renowned research team exploring the use of the MOCVD growth technique. Formerly head of research at Thomson-CSF in France, she was awarded the IBM Europe Science and Technology Prize for her early research into MOCVD.




Electrical Characterization of GaAs Materials and Devices


Book Description

Summarizes electrical measurement data in GaAs materials and devices, and describes in detail the techniques used to obtain these data and the ideas behind them. Special emphasis is given to subjects sometimes ignored in other works such as impurity and defect Fermi functions, degeneracy factors and multiband conduction, and also to relatively new subjects such as the application of magnetoresistance to determine carrier mobility in device structures. Some of the information is quite practical, e.g., how to make ohmic contacts or where to buy a commercial, automated Hall-effect apparatus. Includes many detailed derivations.