Gas Discharge Physics


Book Description

Here is both a textbook for beginners and a handbook for specialists in plasma physics and gaseous electronics. The book contains much useful data: results of experiments and calculations, and reference data. It provides estimates of typical parameters and formulas in forms suitable for computations. Gas discharges of all important types are discussed: breakdown, glow, arc, spark and corona at radio frequency, microwave and optical frequences. The generation of plasma, and its application to high power gas lasers are treated in detail.




Theory of Gas Discharge Plasma


Book Description

This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.




Theoretical and Computational Physics of Gas Discharge Phenomena


Book Description

This work concerns the computational modelling of the dynamics of partially ionized gases, with emphasis on electrodischarge processes. Understanding gas discharges is fundamental for many processes in mechanics, manufacturing, materials science, and aerospace engineering. This second edition has been expanded to include the latest developments in the field, especially regarding the drift-diffusion model and rarefied hypersonic flow.




Spark Discharge


Book Description

Spark Discharge is a first-of-its-kind text, providing a comprehensive and systematic description of the spark breakdown of long gas gaps. It discusses the nature of a long spark, physical peculiarities of relevant gas discharge processes, methods and results of experimental studies, and analytical and numerical models. The most important applications in high-voltage engineering are covered in a single volume. The straightforward presentation of complicated materials, the deep insight into the nature of the processes, and the simplified mathematical descriptions of the phenomena, make Spark Discharge an excellent textbook for students and an indispensable reference for researchers, physicists, and engineers.




Gas Discharge and Gas Insulation


Book Description

This book presents a comprehensive overview of research on environmentally friendly insulating gases, in response to the urgent calls for developing alternatives to SF6 due to the increasing awareness of the threat it poses as a greenhouse gas. It covers gas dielectrics, SF6 and its mixtures, and potential alternative gases, providing fundamental information on gas discharge and gas insulation and especially focusing on the development of new environmentally friendly insulating gases over the last decade. The book begins by describing the insulating and arcing characteristics of SF6, followed by an introduction to the gas dielectrics performance of SF6 gas mixtures with buffer gases. The latest findings on new environmentally friendly insulating gases are described in detail, and suggestions for practical application are also provided. Graduate students and teachers involved in high-voltage and insulation engineering can use the book as teaching material. Researchers working in plasma science, laser action and related applied physics fields can also benefit from the book’s analytical approach and detailed data; engineers from the fields of electric power operation systems and electrical manufacturing will find it a valuable reference work for solving practical problems.




Introduction to Simulation Methods for Gas Discharge Plasmas


Book Description

Gas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented. Key Features Focuses solely on gas discharge plasmas Covers basic modelling techniques, including particle, fluid, and hybrid Provides details of applications and implementation for the considered methods Special emphasis is given to the applicability and reliability of different modelling techniques Provides specific examples of numerical simulations of the gas discharge plasmas




Physics of Ionized Gases


Book Description

A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.




Physics of Radiofrequency Capacitive Discharge


Book Description

This book describes the physical mechanism of high-frequency (radio-frequency) capacitive discharge (RFCD) of low and medium pressure and the properties of discharge plasma in detail. The main properties and characteristics of RFCD, the features of electric breakdown in a high-frequency field are also investigated. The properties of near-electrode layers of a spatial discharge, the nature of the electric field in them, and the processes of charge transport to electrodes are explored. The work is intended for scientists engaged in gas discharge physics and low-temperature plasmas, graduate students and students of physics, physical chemistry, and relevant specialties.




Radio-Frequency Capacitive Discharges


Book Description

The first publication of its kind in the field, this book describes comprehensively and systematically radio-frequency (rf) capacitive gas discharges of intermediate and low pressure and their application to gas laser excitation and to plasma processing. Text presents the physics underlying rf discharges along with techniques for obtaining such discharges, experimental methods and results, and theoretical and numerical modeling findings. Radio-Frequency Capacitive Discharges is written by well-known specialists in the field, authors of many theoretical and experimental works. They provide simple and clear discussions of complicated physical phenomena. A complete review on the state of the art is included. This interesting new book can be used as a textbook for students and postgraduates and as a comprehensive guidebook by specialists.




Plasma Kinetics in Atmospheric Gases


Book Description

Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.