Gauge Field Theory in Natural Geometric Language


Book Description

Gauge Field theory in Natural Geometric Language addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics. Selected mathematical and theoretical topics are exposed within a brief, integrated approach that exploits standard and non-standard notions, as well as recent advances, in a natural geometric language in which the role of structure groups can be regarded as secondary even in the treatment of the gauge fields themselves. In proposing an original bridge between physics and mathematics, this text will appeal not only to mathematicians who wish to understand some of the basic ideas involved in quantum particle physics, but also to physicists who are not satisfied with the usual mathematical presentations of their field.




The Dawning of Gauge Theory


Book Description

During the course of this century, gauge invariance has slowly emerged from being an incidental symmetry of electromagnetism to being a fundamental geometrical principle underlying the four known fundamental physical interactions. The development has been in two stages. In the first stage (1916-1956) the geometrical significance of gauge-invariance gradually came to be appreciated and the original abelian gauge-invariance of electromagnetism was generalized to non-abelian gauge invariance. In the second stage (1960-1975) it was found that, contrary to first appearances, the non-abelian gauge-theories provided exactly the framework that was needed to describe the nuclear interactions (both weak and strong) and thus provided a universal framework for describing all known fundamental interactions. In this work, Lochlainn O'Raifeartaigh describes the former phase. O'Raifeartaigh first illustrates how gravitational theory and quantum mechanics played crucial roles in the reassessment of gauge theory as a geometric principle and as a framework for describing both electromagnetism and gravitation. He then describes how the abelian electromagnetic gauge-theory was generalized to its present non-abelian form. The development is illustrated by including a selection of relevant articles, many of them appearing here for the first time in English, notably by Weyl, Schrodinger, Klein, and London in the pre-war years, and by Pauli, Shaw, Yang-Mills, and Utiyama after the war. The articles illustrate that the reassessment of gauge-theory, due in a large measure to Weyl, constituted a major philosophical as well as technical advance.




An Introduction to Covariant Quantum Mechanics


Book Description

This book deals with an original contribution to the hypothetical missing link unifying the two fundamental branches of physics born in the twentieth century, General Relativity and Quantum Mechanics. Namely, the book is devoted to a review of a "covariant approach" to Quantum Mechanics, along with several improvements and new results with respect to the previous related literature. The first part of the book deals with a covariant formulation of Galilean Classical Mechanics, which stands as a suitable background for covariant Quantum Mechanics. The second part deals with an introduction to covariant Quantum Mechanics. Further, in order to show how the presented covariant approach works in the framework of standard Classical Mechanics and standard Quantum Mechanics, the third part provides a detailed analysis of the standard Galilean space-time, along with three dynamical classical and quantum examples. The appendix accounts for several non-standard mathematical methods widely used in the body of the book.




Natural and Gauge Natural Formalism for Classical Field Theorie


Book Description

In this book the authors develop and work out applications to gravity and gauge theories and their interactions with generic matter fields, including spinors in full detail. Spinor fields in particular appear to be the prototypes of truly gauge-natural objects, which are not purely gauge nor purely natural, so that they are a paradigmatic example of the intriguing relations between gauge natural geometry and physical phenomenology. In particular, the gauge natural framework for spinors is developed in this book in full detail, and it is shown to be fundamentally related to the interaction between fermions and dynamical tetrad gravity.




Roman Jackiw: 80th Birthday Festschrift


Book Description

Professor Roman Jackiw is a theoretical physicist renowned for his many fundamental contributions and discoveries in quantum and classical field theories, ranging from high energy physics and gravitation to condensed matter and the physics of fluids. Among his major achievements is the establishment of the presence of the famous Adler-Bell-Jackiw anomalies in quantum field theory, a discovery with far-reaching implications for the structure of the Standard Model of particle physics and all attempts to go beyond it. Other important contributions, among many, that one may mention here are the topological mass term in gravity and gauge theories, and the fractionalization of fermion number and charge in the presence of topological objects.Roman Jackiw, a Professor Emeritus at the MIT Center for Theoretical Physics, is the recipient of several international awards including the Dannie Heineman Prize for Mathematical Physics and the Dirac Medal of the ICTP. He is a member of the US National Academy of Sciences and honorary doctor of Kiev, Montreal, Tours, Turin and Uppsala universities.To celebrate his 80th birthday, many students and colleagues of Professor Jackiw have come together to share interesting anecdotes of working with him as well as their latest research, some of it inspired by his work. Edited by his former students Antti Niemi and Terry Tomboulis together with his long-time friend KK Phua, this festschrift volume is a must-have collection for all theoretical physicists.




Recent Advances in Diffeologies and Their Applications


Book Description

This volume contains the proceedings of the AMS-EMS-SMF Special Session on Recent Advances in Diffeologies and Their Applications, held from July 18–20, 2022, at the Université de Grenoble-Alpes, Grenoble, France. The articles present some developments of the theory of diffeologies applied in a broad range of topics, ranging from algebraic topology and higher homotopy theory to integrable systems and optimization in PDE. The geometric framework proposed by diffeologies is known to be one of the most general approaches to problems arising in several areas of mathematics. It can adapt to many contexts without major technical difficulties and produce examples inaccessible by other means, in particular when studying singularities or geometry in infinite dimension. Thanks to this adaptability, diffeologies appear to have become an interesting and useful language for a growing number of mathematicians working in many different fields. Some articles in the volume also illustrate some recent developments of the theory, which makes it even more deep and useful.




An Elementary Primer for Gauge Theory


Book Description

Gauge theory is now recognized as one of the most revolutionary discoveries in physics since the development of quantum mechanics. This primer explains how and why gauge theory has dramatically changed our view of the fundamental forces of nature. The text is designed for the non-specialist. A new, intuitive approach is used to make the ideas of gauge theory accessible to both scientists and students with only a background in quantum mechanics. Emphasis is placed on the physics rather than the formalism.




The Diverse World of PDEs


Book Description

This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at Independent University of Moscow and Moscow State University, Moscow, Russia. The papers reflect the modern interplay between partial differential equations and various aspects of algebra and computer science. The topics discussed are: relations between integrability and differential rings, supermanifolds, differential calculus over graded algebras, noncommutative generalizations of PDEs, quantum vector fields, generalized Nijenhuis torsion, cohomological approach to the geometry of differential equations, the argument shift method, Frölicher structures in the formal Kadomtsev–Petviashvili hierarchy, and computer-based determination of optimal systems of Lie subalgebras. The companion volume (Contemporary Mathematics, Volume 788) is devoted to Geometry and Mathematical Physics.




Advanced Classical Field Theory


Book Description

Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories OCo gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory OCo are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained.




Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)


Book Description

The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.