General Theory of Information Transfer and Combinatorics


Book Description

This book collects 63 revised, full-papers contributed to a research project on the "General Theory of Information Transfer and Combinatorics" that was hosted from 2001-2004 at the Center for Interdisciplinary Research (ZIF) of Bielefeld University and several incorporated meetings. Topics covered include probabilistic models, cryptology, pseudo random sequences, quantum models, pattern discovery, language evolution, and network coding.




Lectures on Advances in Combinatorics


Book Description

The lectures concentrate on highlights in Combinatorial (ChaptersII and III) and Number Theoretical (ChapterIV) Extremal Theory, in particular on the solution of famous problems which were open for many decades. However, the organization of the lectures in six chapters does neither follow the historic developments nor the connections between ideas in several cases. With the speci?ed auxiliary results in ChapterI on Probability Theory, Graph Theory, etc., all chapters can be read and taught independently of one another. In addition to the 16 lectures organized in 6 chapters of the main part of the book, there is supplementary material for most of them in the Appendix. In parti- lar, there are applications and further exercises, research problems, conjectures, and even research programs. The following books and reports [B97], [ACDKPSWZ00], [A01], and [ABCABDM06], mostly of the authors, are frequently cited in this book, especially in the Appendix, and we therefore mark them by short labels as [B], [N], [E], and [G]. We emphasize that there are also “Exercises” in [B], a “Problem Section” with contributions by several authors on pages 1063–1105 of [G], which are often of a combinatorial nature, and “Problems and Conjectures” on pages 172–173 of [E].




Information Theory, Combinatorics, and Search Theory


Book Description

This volume is dedicated to the memory of Rudolf Ahlswede, who passed away in December 2010. The Festschrift contains 36 thoroughly refereed research papers from a memorial symposium, which took place in July 2011. The four macro-topics of this workshop: theory of games and strategic planning; combinatorial group testing and database mining; computational biology and string matching; information coding and spreading and patrolling on networks; provide a comprehensive picture of the vision Rudolf Ahlswede put forward of a broad and systematic theory of search.




Aspects of Network and Information Security


Book Description

Understanding network vulnerabilities in order to protect networks from external and internal threats is vital to the world's economy and should be given the highest priority. This volume discusses topics such as network security, information security and coding.




Storing and Transmitting Data


Book Description

The volume “Storing and Transmitting Data” is based on Rudolf Ahlswede's introductory course on "Information Theory I" and presents an introduction to Shannon Theory. Readers, familiar or unfamiliar with the technical intricacies of Information Theory, will benefit considerably from working through the book; especially Chapter VI with its lively comments and uncensored insider views from the world of science and research offers informative and revealing insights. This is the first of several volumes that will serve as a collected research documentation of Rudolf Ahlswede’s lectures on information theory. Each volume includes comments from an invited well-known expert. Holger Boche contributed his insights in the supplement of the present volume. Classical information processing concerns the main tasks of gaining knowledge, storage, transmitting and hiding data. The first task is the prime goal of Statistics. For the two next, Shannon presented an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also in Theoretical Computer Science, Physics, and Electrical Engineering with background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find the basis of entire research programs.




Entropy, Search, Complexity


Book Description

This book collects survey papers in the fields of entropy, search and complexity, summarizing the latest developments in their respective areas. More than half of the papers belong to search theory which lies on the borderline of mathematics and computer science, information theory and combinatorics, respectively. The book will be useful to experienced researchers as well as young scientists and students both in mathematics and computer science.




Identification and Other Probabilistic Models


Book Description

The sixth volume of Rudolf Ahlswede's lectures on Information Theory is focused on Identification Theory. In contrast to Shannon's classical coding scheme for the transmission of a message over a noisy channel, in the theory of identification the decoder is not really interested in what the received message is, but only in deciding whether a message, which is of special interest to him, has been sent or not. There are also algorithmic problems where it is not necessary to calculate the solution, but only to check whether a certain given answer is correct. Depending on the problem, this answer might be much easier to give than finding the solution. ``Easier'' in this context means using fewer resources like channel usage, computing time or storage space. Ahlswede and Dueck's main result was that, in contrast to transmission problems, where the possible code sizes grow exponentially fast with block length, the size of identification codes will grow doubly exponentially fast. The theory of identification has now developed into a sophisticated mathematical discipline with many branches and facets, forming part of the Post Shannon theory in which Ahlswede was one of the leading experts. New discoveries in this theory are motivated both by concrete engineering problems and by explorations of the inherent properties of the mathematical structures. Rudolf Ahlswede wrote: It seems that the whole body of present day Information Theory will undergo serious revisions and some dramatic expansions. In this book we will open several directions of future research and start the mathematical description of communication models in great generality. For some specific problems we provide solutions or ideas for their solutions. The lectures presented in this work, which consists of 10 volumes, are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs. The book also contains an afterword by Gunter Dueck.




Transmitting and Gaining Data


Book Description

The calculation of channel capacities was one of Rudolf Ahlswede's specialties and is the main topic of this second volume of his Lectures on Information Theory. Here we find a detailed account of some very classical material from the early days of Information Theory, including developments from the USA, Russia, Hungary and (which Ahlswede was probably in a unique position to describe) the German school centered around his supervisor Konrad Jacobs. These lectures made an approach to a rigorous justification of the foundations of Information Theory. This is the second of several volumes documenting Rudolf Ahlswede's lectures on Information Theory. Each volume includes comments from an invited well-known expert. In the supplement to the present volume, Gerhard Kramer contributes his insights. Classical information processing concerns the main tasks of gaining knowledge and the storage, transmission and hiding of data. The first task is the prime goal of Statistics. For transmission and hiding data, Shannon developed an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.




Reliability Criteria in Information Theory and in Statistical Hypothesis Testing


Book Description

This monograph briefly formulates fundamental notions and results of Shannon theory on reliable transmission via coding and gives a survey of results obtained in last two-three decades by the authors.




Algorithmics of Large and Complex Networks


Book Description

A state-of-the-art survey that reports on the progress made in selected areas of this important and growing field, aiding the analysis of existing networks and the design of new and more efficient algorithms for solving various problems on these networks.