General Type-2 Fuzzy Logic in Dynamic Parameter Adaptation for the Harmony Search Algorithm


Book Description

This book focuses on the fields of fuzzy logic and metaheuristic algorithms, particularly the harmony search algorithm and fuzzy control. There are currently several types of metaheuristics used to solve a range of real-world of problems, and these metaheuristics contain parameters that are usually fixed throughout the iterations. However, a number of techniques are also available that dynamically adjust the parameters of an algorithm, such as probabilistic fuzzy logic. This book proposes a method of addressing the problem of parameter adaptation in the original harmony search algorithm using type-1, interval type-2 and generalized type-2 fuzzy logic. The authors applied this methodology to the resolution of problems of classical benchmark mathematical functions, CEC 2015, CEC2017 functions and to the optimization of various fuzzy logic control cases, and tested the method using six benchmark control problems – four of the Mamdani type: the problem of filling a water tank, the problem of controlling the temperature of a shower, the problem of controlling the trajectory of an autonomous mobile robot and the problem of controlling the speed of an engine; and two of the Sugeno type: the problem of controlling the balance of a bar and ball, and the problem of controlling control the balance of an inverted pendulum. When the interval type-2 fuzzy logic system is used to model the behavior of the systems, the results show better stabilization because the uncertainty analysis is better. As such, the authors conclude that the proposed method, based on fuzzy systems, fuzzy controllers and the harmony search optimization algorithm, improves the behavior of complex control plants.




Type-2 Fuzzy Logic


Book Description

This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.




Recent Advances in Interval Type-2 Fuzzy Systems


Book Description

This book reviews current state of the art methods for building intelligent systems using type-2 fuzzy logic and bio-inspired optimization techniques. Combining type-2 fuzzy logic with optimization algorithms, powerful hybrid intelligent systems have been built using the advantages that each technique offers. This book is intended to be a reference for scientists and engineers interested in applying type-2 fuzzy logic for solving problems in pattern recognition, intelligent control, intelligent manufacturing, robotics and automation. This book can also be used as a reference for graduate courses like the following: soft computing, intelligent pattern recognition, computer vision, applied artificial intelligence, and similar ones. We consider that this book can also be used to get novel ideas for new lines of re-search, or to continue the lines of research proposed by the authors.




Type-3 Fuzzy Logic in Intelligent Control


Book Description

This book focuses on the field of type-3 fuzzy logic, also considering metaheuristics for applications in the control area. The main idea is that these areas together can solve various control problems and find better results. In this book, we test the proposed method using several benchmark problems, such as the problem for filling a water tank and the problem for controlling the trajectory in an autonomous mobile robot. We notice that when interval type-3 fuzzy systems are implemented to model the behavior of the systems, the results in control show a better stabilization, because the management of uncertainty is better. For this reason, we consider in this book the proposed method using type-3 fuzzy systems, fuzzy controllers, and metaheuristic algorithms to improve the control behavior of complex nonlinear plants. This book is intended to be a reference for scientists and engineers interested in applying type-3 fuzzy logic techniques for solving problems in intelligent control. We consider that this book can also be used to get novel ideas for new lines of research, or to continue the lines of research proposed by the authors of the book




Complex Systems: Spanning Control and Computational Cybernetics: Applications


Book Description

This book, dedicated to Professor Georgi M. Dimirovski on his anniversary, contains new research directions, challenges, and many relevant applications related to many aspects within the broadly perceived areas of systems and control, including signal analysis and intelligent systems. The project comprises two volumes with papers written by well known and very active researchers and practitioners. The first volume is focused on more foundational aspects related to general issues in systems science and mathematical systems, various problems in control and automation, and the use of computational and artificial intelligence in the context of systems modeling and control. The second volume is concerned with a presentation of relevant applications, notably in robotics, computer networks, telecommunication, fault detection/diagnosis, as well as in biology and medicine, and economic, financial, and social systems too.




Nature-inspired Optimization of Type-2 Fuzzy Neural Hybrid Models for Classification in Medical Diagnosis


Book Description

This book describes the utilization of different soft computing techniques and their optimization for providing an accurate and efficient medical diagnosis. The proposed method provides a precise and timely diagnosis of the risk that a person has to develop a particular disease, but it can be adaptable to provide the diagnosis of different diseases. This book reflects the experimentation that was carried out, based on the different optimizations using bio-inspired algorithms (such as bird swarm algorithm, flower pollination algorithms, and others). In particular, the optimizations were carried out to design the fuzzy classifiers of the nocturnal blood pressure profile and heart rate level. In addition, to obtain the architecture that provides the best result, the neurons and the number of neurons per layers of the artificial neural networks used in the model are optimized. Furthermore, different tests were carried out with the complete optimized model. Another work that is presented in this book is the dynamic parameter adaptation of the bird swarm algorithm using fuzzy inference systems, with the aim of improving its performance. For this, different experiments are carried out, where mathematical functions and a monolithic neural network are optimized to compare the results obtained with the original algorithm. The book will be of interest for graduate students of engineering and medicine, as well as researchers and professors aiming at proposing and developing new intelligent models for medical diagnosis. In addition, it also will be of interest for people working on metaheuristic algorithms and their applications on medicine.




Comparative Study of Interval Type-2 and Type-1 Fuzzy Genetic and Flower Pollination Algorithms in Optimization of Fuzzy Fractional Order PIŒaDŒo Controllers


Book Description

In this chapter, a comparison between fuzzy genetic optimization algorithm (FGOA) and fuzzy flower pollination optimization algorithm (FFPOA) is bestowed. In extension, the prime parameters of each algorithm adapted using interval type-2 and type-1 fuzzy logic system (FLS) are presented. The key feature of type-2 fuzzy system is alimenting the modeling uncertainty to the algorithms, and hence it is a prime motivation of using interval type-2 fuzzy systems for dynamic parameter adaption. These fuzzy algorithms (type-1 and type-2 fuzzy system versions) are compared with the design of fuzzy control systems used for controlling the dihybrid level control process subject to system component (leak) fault. Simulation results reveal that interval type-2 fuzzy-based FPO algorithm outperforms the results of the type-1 and type-2 fuzzy GO algorithm.




Applied Mathematics and Computational Intelligence


Book Description

This book contains select papers presented at the International Conference on Applied Mathematics and Computational Intelligence (ICAMCI-2020), held at the National Institute of Technology Agartala, Tripura, India, from 19–20 March 2020. It discusses the most recent breakthroughs in intelligent techniques such as fuzzy logic, neural networks, optimization algorithms, and their application in the development of intelligent information systems by using applied mathematics. The book also explains how these systems will be used in domains such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and complicated problems in optimization. The book publishes new developments and advances in various areas of type-3 fuzzy, intuitionistic fuzzy, computational mathematics, block chain, creak analysis, supply chain, soft computing, fuzzy systems, hybrid intelligent systems, thermos-elasticity, etc. The book is targeted to researchers, scientists, professors, and students of mathematics, computer science, applied science and engineering, interested in the theory and applications of intelligent systems in real-world applications. It provides young researchers and students with new directions for their future study by exchanging fresh thoughts and finding new problems.




Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine


Book Description

This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.




Fuzzy Techniques: Theory and Applications


Book Description

This book describes the latest findings related to fuzzy techniques, discussing applications in control, economics, education, humor studies, industrial engineering, linguistics, management, marketing, medicine and public health, military engineering, robotics, ship design, sports, transportation, and many other areas. It also presents recent fuzzy-related algorithms and theoretical results that can be used in other application areas. Featuring selected papers from the Joint World Congress of the International Fuzzy Systems Association (IFSA) and the Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) IFSA-NAFIPS’2019, held in Lafayette, Louisiana, USA, on June 18–21, 2019, the book is of interest to practitioners wanting to use fuzzy techniques to process imprecise expert knowledge. It is also a valuable resource for researchers wishing to extend the ideas from these papers to new application areas, for graduate students and for anyone else interested in problems involving fuzziness and uncertainty.