The Notre Dame Lectures


Book Description

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In the fall of 2000, the logic community at the University of Notre Dame, Indiana hosted Greg Hjorth, Rodney G. Downey, Zoé Chatzidakis and Paola D'Aquino as visiting lecturers. Each of them presented a month-long series of expository lectures at the graduate level. This volume, the eighteenth publication in the Lecture Notes in Logic series, contains refined and expanded versions of those lectures. The four articles are entitled 'Countable models and the theory of Borel equivalence relations', 'Model theory of difference fields', 'Some computability-theoretic aspects of reals and randomness' and 'Weak fragments of Peano arithmetic'.




Selected Papers on Harmonic Analysis, Groups, and Invariants


Book Description

The five papers originally appeared in Japanese in the journal Sugaku and would ordinarily appear in the Society's translation of that journal, but are published separately here to expedite their dissemination. They explore such aspects as representation theory, differential geometry, invariant theory, and complex analysis. No index. Member prices are $47 for institutions and $35 for individual. Annotation copyrighted by Book News, Inc., Portland, OR.




Homogeneous Spaces and Equivariant Embeddings


Book Description

Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.