Genetic Theory for Cubic Graphs


Book Description

This book was motivated by the notion that some of the underlying difficulty in challenging instances of graph-based problems (e.g., the Traveling Salesman Problem) may be “inherited” from simpler graphs which – in an appropriate sense – could be seen as “ancestors” of the given graph instance. The authors propose a partitioning of the set of unlabeled, connected cubic graphs into two disjoint subsets named genes and descendants, where the cardinality of the descendants dominates that of the genes. The key distinction between the two subsets is the presence of special edge cut sets, called cubic crackers, in the descendants. The book begins by proving that any given descendant may be constructed by starting from a finite set of genes and introducing the required cubic crackers through the use of six special operations, called breeding operations. It shows that each breeding operation is invertible, and these inverse operations are examined. It is therefore possible, for any given descendant, to identify a family of genes that could be used to generate the descendant. The authors refer to such a family of genes as a “complete family of ancestor genes” for that particular descendant. The book proves the fundamental, although quite unexpected, result that any given descendant has exactly one complete family of ancestor genes. This result indicates that the particular combination of breeding operations used strikes the right balance between ensuring that every descendant may be constructed while permitting only one generating set. The result that any descendant can be constructed from a unique set of ancestor genes indicates that most of the structure in the descendant has been, in some way, inherited from that, very special, complete family of ancestor genes, with the remaining structure induced by the breeding operations. After establishing this, the authors proceed to investigate a number of graph theoretic properties: Hamiltonicity, bipartiteness, and planarity, and prove results linking properties of the descendant to those of the ancestor genes. They develop necessary (and in some cases, sufficient) conditions for a descendant to contain a property in terms of the properties of its ancestor genes. These results motivate the development of parallelizable heuristics that first decompose a graph into ancestor genes, and then consider the genes individually. In particular, they provide such a heuristic for the Hamiltonian cycle problem. Additionally, a framework for constructing graphs with desired properties is developed, which shows how many (known) graphs that constitute counterexamples of conjectures could be easily found.




Dynamic Models in Biology


Book Description

From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.




Number Theory and Combinatorics


Book Description

Over a career that spanned 60 years, Ronald L. Graham (known to all as Ron) made significant contributions to the fields of discrete mathematics, number theory, Ramsey theory, computational geometry, juggling and magical mathematics, and many more. Ron also was a mentor to generations of mathematicians, he gave countless talks and helped bring mathematics to a wider audience, and he held signifi cant leadership roles in the mathematical community. This volume is dedicated to the life and memory of Ron Graham, and includes 20-articles by leading scientists across a broad range of subjects that refl ect some of the many areas in which Ron worked.




Hamiltonian Cycle Problem and Markov Chains


Book Description

This research monograph summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian Cycle and the Travelling Salesman Problems - into convex domains where continuum analysis can be carried out. Arguably, the inherent difficulty of these, now classical, problems stems precisely from the discrete nature of domains in which these problems are posed. The convexification of domains underpinning these results is achieved by assigning probabilistic interpretation to key elements of the original deterministic problems. In particular, the approaches summarized here build on a technique that embeds Hamiltonian Cycle and Travelling Salesman Problems in a structured singularly perturbed Markov decision process. The unifying idea is to interpret subgraphs traced out by deterministic policies (including Hamiltonian cycles, if any) as extreme points of a convex polyhedron in a space filled with randomized policies. The above innovative approach has now evolved to the point where there are many, both theoretical and algorithmic, results that exploit the nexus between graph theoretic structures and both probabilistic and algebraic entities of related Markov chains. The latter include moments of first return times, limiting frequencies of visits to nodes, or the spectra of certain matrices traditionally associated with the analysis of Markov chains. However, these results and algorithms are dispersed over many research papers appearing in journals catering to disparate audiences. As a result, the published manuscripts are often written in a very terse manner and use disparate notation, thereby making it difficult for new researchers to make use of the many reported advances. Hence the main purpose of this book is to present a concise and yet easily accessible synthesis of the majority of the theoretical and algorithmic results obtained so far. In addition, the book discusses numerous open questions and problems that arise from this body of work and which are yet to be fully solved. The approach casts the Hamiltonian Cycle Problem in a mathematical framework that permits analytical concepts and techniques, not used hitherto in this context, to be brought to bear to further clarify both the underlying difficulty of NP-completeness of this problem and the relative exceptionality of truly difficult instances. Finally, the material is arranged in such a manner that the introductory chapters require very little mathematical background and discuss instances of graphs with interesting structures that motivated a lot of the research in this topic. More difficult results are introduced later and are illustrated with numerous examples.




CRC Concise Encyclopedia of Mathematics


Book Description

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d




Handbook of Research on Novel Soft Computing Intelligent Algorithms


Book Description

"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.




Computational Characterisation of Gold Nanocluster Structures


Book Description

In this thesis, Andrew Logsdail demonstrates that computational chemistry is a powerful tool in contemporary nanoscience, complementing experimental observations and helping guide future experiments. The aim of this particular PhD is to further our understanding of structural and compositional preferences in gold nanoparticles, as well as the compositional and chemical ordering preferences in bimetallic nanoalloys formed with other noble metals, such as palladium and platinum. Highlights include: calculations of the structural preferences and optical-response of gold nanoparticles and gold-containing nanoalloys; the design and implementation of novel numerical algorithms for the structural characterisation of gold nanoparticles from electron microscopy images; and electronic structure calculations investigating the interaction of gold nanoparticles with graphene and graphite substrates.The results presented here have significant implications for future research on the chemical and physical properties of gold-based nanoparticles and are of interest to many researchers working on experimental and theoretical aspects of nanoscience.




Catalyzing Inquiry at the Interface of Computing and Biology


Book Description

Advances in computer science and technology and in biology over the last several years have opened up the possibility for computing to help answer fundamental questions in biology and for biology to help with new approaches to computing. Making the most of the research opportunities at the interface of computing and biology requires the active participation of people from both fields. While past attempts have been made in this direction, circumstances today appear to be much more favorable for progress. To help take advantage of these opportunities, this study was requested of the NRC by the National Science Foundation, the Department of Defense, the National Institutes of Health, and the Department of Energy. The report provides the basis for establishing cross-disciplinary collaboration between biology and computing including an analysis of potential impediments and strategies for overcoming them. The report also presents a wealth of examples that should encourage students in the biological sciences to look for ways to enable them to be more effective users of computing in their studies.




Evolvable Hardware


Book Description

Evolvable hardware (EHW) refers to hardware whose architecture/structure and functions change dynamically and autonomously in order to improve its performance in carrying out tasks. The only single resource presenting both the fundamentals, and the latest advances in the field, this book teaches the basics of reconfigurable devices, why they are necessary and how they are designed.




Traveling Salesman Problem


Book Description

The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance.