Geomechanics and Geotechnics of Particulate Media


Book Description

Microscopic re-examination of geomaterials consisting of aggregates can shed light on macroscopic behaviour, including compressibility, anisotropy, yielding, creep, cyclic liquefaction and shear rupture. As a result of this process of examination, new methods of material characterization emerge, leading to a greater degree of accuracy in the specification of new constitutive models with physically-meaningful parameters. The impetus behind this development is an increasing awareness on sustainability, leading to the more efficient use of recycled materials for geotechnical applications. The characteristics of recycled materials, such as compressibility and self-hardening, may differ significantly from those of natural materials, and it is crucial that evaluation is made from a specifically particulate perspective.




Geomechanics and Geotechnics of Particulate Media


Book Description

Microscopic re-examination of geomaterials consisting of aggregates can shed light on macroscopic behaviour, including compressibility, anisotropy, yielding, creep, cyclic liquefaction and shear rupture. As a result of this process of examination, new methods of material characterization emerge, leading to a greater degree of accuracy in the specification of new constitutive models with physically-meaningful parameters. The impetus behind this development is an increasing awareness on sustainability, leading to the more efficient use of recycled materials for geotechnical applications. The characteristics of recycled materials, such as compressibility and self-hardening, may differ significantly from those of natural materials, and it is crucial that evaluation is made from a specifically particulate perspective.




Particulate Discrete Element Modelling


Book Description

The first single work on DEM providing the information to get started with this powerful numerical modelling approach. Provides the basic details of the numerical method and the approaches used to interpret the results of DEM simulations. It will be of use to professionals, researchers and higher level students, with a theoretical overview of DEM as well as practical guidance.Selected Contents: 1.Introduction 2.Use of DEM in Geomechanics 3.Calculation of Contact Forces 4.Particle Motion 5.Particle Types 6.Boundary Conditions 7.Initial Geometry and Specimen Generation 8.Time Integration and Discrete Element Modelling 9.DEM Interpretation: A Continuum Perspective 10.Postprocessing: Graphical Interpretation of DEM Simulations 11.Basic Statisti




Geomechanics and Geotechnics


Book Description

Soils are composed of grains but they are generally treated as continua in the classical framework of geomechanics. Their macroscopic response under loading, such as their non-linearity, yielding and anisotropy, is controlled by their micro-structure, the characteristics of the grains and the disposition of contacts between them. There have been rapid advances in technology both to investigate the microscopic properties of soils, and to simulate their granular behaviour explicitly through Discrete Element Method (DEM). DEM was originally used to ...







Geotechnical Modelling


Book Description

Modelling forms an implicit part of all engineering design but many engineers engage in modelling without consciously considering the nature, validity and consequences of the supporting assumptions. Derived from courses given to postgraduate and final year undergraduate MEng students, this book presents some of the models that form a part of the typical undergraduate geotechnical curriculum and describes some of the aspects of soil behaviour which contribute to the challenge of geotechnical modelling. Assuming a familiarity with basic soil mechanics and traditional methods of geotechnical design, this book is a valuable tool for students of geotechnical and structural and civil engineering as well as also being useful to practising engineers involved in the specification of numerical or physical geotechnical modelling.




Correlations of Soil and Rock Properties in Geotechnical Engineering


Book Description

This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.




Track Geotechnology and Substructure Management


Book Description

This comprehensive study provides practical advice and guidance on the important topics of rail transport and ground engineering, the use of which will result in optimum quality with the minimum maintenance effort and the most economical use of resources. The authors have synthesized all of their international knowledge and experience in this field, and produced, for the first time, a definitive guide for the design, construction, maintenance and renewal of railway track as they relate to geotechnology.




Géotechnique


Book Description




Mechanics of Ballasted Rail Tracks


Book Description

In this book, the authors discuss testing of ballast, including the strength, deformation and degradation aspects of fresh and recycled ballast under monotonic and cyclic loading. The effectiveness of geosynthetics in stabilising recycled ballast has also been examined. A new stress-strain constitutive model for ballast incorporating particle breakage is presented. Finally, a new range of particle gradations, balancing the strength and permeability requirements, has been proposed for future rail tracks. This book is intended as a reference text for final year civil engineering students and postgraduates, and for practicing railway engineers with the task of modernizing existing designs.




Recent Books