Geometric Methods in Bio-Medical Image Processing


Book Description

The genesis of this book goes back to the conference held at the University of Bologna, June 1999, on collaborative work between the University of California at Berkeley and the University of Bologna. The book, in its present form, is a compilation of some of the recent work using geometric partial differential equations and the level set methodology in medical and biomedical image analysis. The book not only gives a good overview on some of the traditional applications in medical imagery such as, CT, MR, Ultrasound, but also shows some new and exciting applications in the area of Life Sciences, such as confocal microscope image understanding.




Riemannian Geometric Statistics in Medical Image Analysis


Book Description

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications




Biomedical Image Analysis


Book Description

Computers have become an integral part of medical imaging systems and are used for everything from data acquisition and image generation to image display and analysis. As the scope and complexity of imaging technology steadily increase, more advanced techniques are required to solve the emerging challenges. Biomedical Image Analysis demonstr




Handbook of Biomedical Image Analysis


Book Description

Handbook of Biomedical Image Analysis: Segmentation Models (Volume I) is dedicated to the segmentation of complex shapes from the field of imaging sciences using different mathematical techniques. This volume is aimed at researchers and educators in imaging sciences, radiological imaging, clinical and diagnostic imaging, physicists covering different medical imaging modalities, as well as researchers in biomedical engineering, applied mathematics, algorithmic development, computer vision, signal processing, computer graphics and multimedia in general, both in academia and industry . Key Features: - Principles of intra-vascular ultrasound (IVUS) - Principles of positron emission tomography (PET) - Physical principles of magnetic resonance angiography (MRA). - Basic and advanced level set methods - Shape for shading method for medical image analysis - Wavelet transforms and other multi-scale analysis functions - Three dimensional deformable surfaces - Level Set application for CT lungs, brain MRI and MRA volume segmentation - Segmentation of incomplete tomographic medical data sets - Subjective level sets for missing boundaries for segmentation




Handbook of Biomedical Image Analysis


Book Description

With rapid advancements in technology, body imaging or components thereof, have become ubiquitous in medicine. While the biomedical devices such as the MRI, CT, X-rays, Ultrasound, PET/SPECT and Microscopy etc, provide us with high resolution images, the challenges that have continued to confront us with, lie in the interpretation of the vast amounts of data generated by these devices. Biomedical applications are the 'bottom-line' essentials in the diagnostic world. It is this diagnostic interpretation feature that forms the core niche for these books and will serve the needs of a broad spectrum of audience including researchers, research clinicians, and students.Together the three volumesnbsp;will illustrate the role of the fusion of registration and segmentation systems for complete biomedical applications therapy delivery benefiting the biomedical doctors, clinical researchers, radiologists and others.




Geometric Level Set Methods in Imaging, Vision, and Graphics


Book Description

Here is, for the first time, a book that clearly explains and applies new level set methods to problems and applications in computer vision, graphics, and imaging. It is an essential compilation of survey chapters from the leading researchers in the field. The applications of the methods are emphasized.




Medical Imaging Systems Technology: Methods in cardiovascular and brain systems


Book Description

This scholarly set of well-harmonized volumes provides indispensable and complete coverage of the exciting and evolving subject of medical imaging systems. Leading experts on the international scene tackle the latest cutting-edge techniques and technologies in an in-depth but eminently clear and readable approach.Complementing and intersecting one another, each volume offers a comprehensive treatment of substantive importance to the subject areas. The chapters, in turn, address topics in a self-contained manner with authoritative introductions, useful summaries, and detailed reference lists. Extensively well-illustrated with figures throughout, the five volumes as a whole achieve a unique depth and breath of coverage.As a cohesive whole or independent of one another, the volumes may be acquired as a set or individually.




Biomedical Image Registration


Book Description

This book constitutes the refereed proceedings of the 4th International Workshop on Biomedical Image Registration, WBIR 2010, held in Lübeck, Germany, in July 2010. The 17 revised full papers and 7 revised poster papers presented were carefully reviewed and selected for inclusion in the book. The papers cover all areas of biomedical image registration and are organized in topical sections on biomedical applications, evaluation, methods of registration, and model based registration.




Medical Imaging Systems Technology Volume 5: Methods In Cardiovascular And Brain Systems


Book Description

This scholarly set of well-harmonized volumes provides indispensable and complete coverage of the exciting and evolving subject of medical imaging systems. Leading experts on the international scene tackle the latest cutting-edge techniques and technologies in an in-depth but eminently clear and readable approach.Complementing and intersecting one another, each volume offers a comprehensive treatment of substantive importance to the subject areas. The chapters, in turn, address topics in a self-contained manner with authoritative introductions, useful summaries, and detailed reference lists. Extensively well-illustrated with figures throughout, the five volumes as a whole achieve a unique depth and breath of coverage.As a cohesive whole or independent of one another, the volumes may be acquired as a set or individually.




Modern Methods in Scientific Computing and Applications


Book Description

When we first heard in the spring of 2000 that the Seminaire de matMmatiques superieures (SMS) was interested in devoting its session of the summer of 200l-its 40th-to scientific computing the idea of taking on the organizational work seemed to us somewhat remote. More immediate things were on our minds: one of us was about to go on leave to the Courant Institute, the other preparing for a research summer in Paris. But the more we learned about the possibilities of such a seminar, the support for the organization and also the great history of the SMS, the more we grew attached to the project. The topics we planned to cover were intended to span a wide range of theoretical and practical tools for solving problems in image processing, thin films, mathematical finance, electrical engineering, moving interfaces, and combustion. These applications alone show how wide the influence of scientific computing has become over the last two decades: almost any area of science and engineering is greatly influenced by simulations, and the SMS workshop in this field came very timely. We decided to organize the workshop in pairs of speakers for each of the eight topics we had chosen, and we invited the leading experts worldwide in these fields. We were very fortunate that every speaker we invited accepted to come, so the program could be realized as planned.