Geometric Phases In Physics


Book Description

During the last few years, considerable interest has been focused on the phase that waves accumulate when the equations governing the waves vary slowly. The recent flurry of activity was set off by a paper by Michael Berry, where it was found that the adiabatic evolution of energy eigenfunctions in quantum mechanics contains a phase of geometric origin (now known as ‘Berry's phase’) in addition to the usual dynamical phase derived from Schrödinger's equation. This observation, though basically elementary, seems to be quite profound. Phases with similar mathematical origins have been identified and found to be important in a startling variety of physical contexts, ranging from nuclear magnetic resonance and low-Reynolds number hydrodynamics to quantum field theory. This volume is a collection of original papers and reprints, with commentary, on the subject.




Geometric Phases in Classical and Quantum Mechanics


Book Description

Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.




The Geometric Phase in Quantum Systems


Book Description

From the reviews: "...useful for experts in mathematical physics...this is a very interesting book, which deserves to be found in any physical library." (OPTICS & PHOTONICS NEWS, July/August 2005).




Berry Phases in Electronic Structure Theory


Book Description

Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.




Geometric Phases in Physics


Book Description

During the last few years, considerable interest has been focused on the phase that waves accumulate when the equations governing the waves vary slowly. The recent flurry of activity was set off by a paper by Michael Berry, where it was found that the adiabatic evolution of energy eigenfunctions in quantum mechanics contains a phase of geometric origin (now known as ?Berry's phase?) in addition to the usual dynamical phase derived from Schr”dinger's equation. This observation, though basically elementary, seems to be quite profound. Phases with similar mathematical origins have been identified and found to be important in a startling variety of physical contexts, ranging from nuclear magnetic resonance and low-Reynolds number hydrodynamics to quantum field theory. This volume is a collection of original papers and reprints, with commentary, on the subject.




Topology and Geometry for Physics


Book Description

A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation.




Lectures on Mechanics


Book Description

Based on the 1991 LMS Invited Lectures given by Professor Marsden, this book discusses and applies symmetry methods to such areas as bifurcations and chaos in mechanical systems.




Relativity and Geometry


Book Description

Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.




Physical Effects of Geometric Phases


Book Description

Berry phase has been widely used in condensed matter physics in the past two decades. This volume is a timely collection of essential papers in this important field, which is highlighted by 2016 Nobel Prize in physics and recent exciting developments in topological matters. Each chapter has an introduction, which helps readers to understand the reprints that follow.




Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases


Book Description

This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic ? A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations of the rigorous solution of the equation that have been carried out in recent years by the authors and their co-workers are presented here, among which the torus and the discocyte (the normal shape of the human red blood cell) may attract attention in cell biology. Within the framework of our mathematical model by analogy with cholesteric liquid crystals, an extensive investigation is made of the formation of the helical structures in a tilted chiral lipid bilayer, which has now become a hot topic in the fields of soft matter and biomembranes.