Book Description
Geometrical and Instrumental Optics
Author :
Publisher : Academic Press
Page : 321 pages
File Size : 36,7 MB
Release : 1989-01-01
Category : Science
ISBN : 0080860133
Geometrical and Instrumental Optics
Author : Peter W. Hawkes
Publisher : Academic Press
Page : 755 pages
File Size : 34,44 MB
Release : 2012-12-02
Category : Science
ISBN : 0080984169
The three volumes in the PRINCIPLES OF ELECTRON OPTICS Series constitute the first comprehensive treatment of electron optics in over forty years. While Volumes 1 and 2 are devoted to geometrical optics, Volume 3 is concerned with wave optics and effects due to wave length. Subjects covered include:Derivation of the laws of electron propagation from SchrUdinger's equationImage formation and the notion of resolutionThe interaction between specimens and electronsImage processingElectron holography and interferenceCoherence, brightness, and the spectral functionTogether, these works comprise a unique and informative treatment of the subject. Volume 3, like its predecessors, will provide readers with both a textbook and an invaluable reference source.
Author : Michael Ware
Publisher : Lulu.com
Page : 350 pages
File Size : 16,46 MB
Release : 2015
Category : Electromagnetic waves
ISBN : 1312929278
Author : John E. Greivenkamp
Publisher : Society of Photo Optical
Page : 117 pages
File Size : 47,21 MB
Release : 2004
Category : Technology & Engineering
ISBN : 9780819452948
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
Author : José Alonso
Publisher : Cambridge University Press
Page : 565 pages
File Size : 21,7 MB
Release : 2019-04-11
Category : Science
ISBN : 1108579833
This book is a comprehensive account of the most recent developments in modern ophthalmic optics. It makes use of the powerful matrix formalism to describe curvature and power, providing a unified view of the optical and geometrical properties of lenses. This unified approach is applicable to the design and properties of not only spectacle lenses, but also contact and intraocular lenses (IOL). The newest developments in lens design, manufacturing and testing are discussed, with an emphasis on the description of free-form technology, which has surpassed traditional manufacturing methods and allows digital lenses to be specifically designed with the unique requirements of the user. Other important topics which are covered include modern lens materials, up-to-date lens measuring techniques, contact and intraocular lenses, progressive power lenses, low vision aids, ocular protection and coatings. Providing a broad overview of recent developments in the field, it is ideal for researchers, manufacturers and practitioners involved in ophthalmic optics.
Author : Ajawad I. Haija
Publisher : CRC Press
Page : 464 pages
File Size : 18,81 MB
Release : 2018-02-21
Category : Mathematics
ISBN : 1351588508
This introductory text is a reader friendly treatment of geometrical and physical optics emphasizing problems and solved examples with detailed analysis and helpful commentary. The authors are seasoned educators with decades of experience teaching optics. Their approach is to gradually present mathematics explaining the physical concepts. It covers ray tracing to the wave nature of light, and introduces Maxwell’s equations in an organic fashion. The text then moves on to explains how to analyze simple optical systems such as spectacles for improving vision, microscopes, and telescopes, while also being exposed to contemporary research topics. Ajawad I. Haija is a professor of physics at Indiana University of Pennsylvania. M. Z. Numan is professor and chair of the department of physics at Indiana University of Pennsylvania. W. Larry Freeman is Emeritus Professor of Physics at Indiana University of Pennsylvania.
Author : George Smith
Publisher : Cambridge University Press
Page : 831 pages
File Size : 23,67 MB
Release : 1997-02-28
Category : Medical
ISBN : 0521472520
Comprehensive textbook on the design and visual ergonomics of optical instruments.
Author : Joel A Kubby
Publisher : CRC Press
Page : 390 pages
File Size : 38,79 MB
Release : 2013-04-26
Category : Technology & Engineering
ISBN : 1439850186
Adaptive Optics for Biological Imaging brings together groundbreaking research on the use of adaptive optics for biological imaging. The book builds on prior work in astronomy and vision science. Featuring contributions by leaders in this emerging field, it takes an interdisciplinary approach that makes the subject accessible to nonspecialists who want to use adaptive optics techniques in their own work in biology and bioengineering. Organized into three parts, the book covers principles, methods, and applications of adaptive optics for biological imaging, providing the reader with the following benefits: Gives a general overview of applied optics, including definitions and vocabulary, to lay a foundation for clearer communication across disciplines Explains what kinds of optical aberrations arise in imaging through various biological tissues, and what technology can be used to correct for these aberrations Explores research done with a variety of biological samples and imaging instruments, including wide-field, confocal, and two-photon microscopes Discusses both indirect wavefront sensing, which uses an iterative approach, and direct wavefront sensing, which uses a parallel approach Since the sample is an integral part of the optical system in biological imaging, the field will benefit from participation by biologists and biomedical researchers with expertise in applied optics. This book helps lower the barriers to entry for these researchers. It also guides readers in selecting the approach that works best for their own applications.
Author : Vasudevan Lakshminarayanan
Publisher : CRC Press
Page : 632 pages
File Size : 34,69 MB
Release : 2012-12-14
Category : Science
ISBN : 143986960X
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Author : A. Mark Smith
Publisher : University of Chicago Press
Page : 470 pages
File Size : 20,25 MB
Release : 2017-11-16
Category : History
ISBN : 022652857X
From its inception in Greek antiquity, the science of optics was aimed primarily at explaining sight and accounting for why things look as they do. By the end of the seventeenth century, however, the analytic focus of optics had shifted to light: its fundamental properties and such physical behaviors as reflection, refraction, and diffraction. This dramatic shift—which A. Mark Smith characterizes as the “Keplerian turn”—lies at the heart of this fascinating and pioneering study. Breaking from previous scholarship that sees Johannes Kepler as the culmination of a long-evolving optical tradition that traced back to Greek antiquity via the Muslim Middle Ages, Smith presents Kepler instead as marking a rupture with this tradition, arguing that his theory of retinal imaging, which was published in 1604, was instrumental in prompting the turn from sight to light. Kepler’s new theory of sight, Smith reveals, thus takes on true historical significance: by treating the eye as a mere light-focusing device rather than an image-producing instrument—as traditionally understood—Kepler’s account of retinal imaging helped spur the shift in analytic focus that eventually led to modern optics. A sweeping survey, From Sight to Light is poised to become the standard reference for historians of optics as well as those interested more broadly in the history of science, the history of art, and cultural and intellectual history.