Geometry Leveled Problems: Count the Squares in an Array of Dots


Book Description

Differentiate problem solving in your classroom using effective, research-based strategies. The problem-solving mini-lesson guides teachers in how to teach differentiated lessons. The student activity sheet features a problem tiered at three levels.







Mathematics for Elementary Teachers


Book Description

This activities manul includes activities designed to be done in class or outside of class. These activities promote critical thinking and discussion and give students a depth of understanding and perspective on the concepts presented in the text.




Foundations of Data Science


Book Description

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.




The Topkapi Scroll


Book Description

Since precious few architectural drawings and no theoretical treatises on architecture remain from the premodern Islamic world, the Timurid pattern scroll in the collection of the Topkapi Palace Museum Library is an exceedingly rich and valuable source of information. In the course of her in-depth analysis of this scroll dating from the late fifteenth or early sixteenth century, Gülru Necipoğlu throws new light on the conceptualization, recording, and transmission of architectural design in the Islamic world between the tenth and sixteenth centuries. Her text has particularly far-reaching implications for recent discussions on vision, subjectivity, and the semiotics of abstract representation. She also compares the Islamic understanding of geometry with that found in medieval Western art, making this book particularly valuable for all historians and critics of architecture. The scroll, with its 114 individual geometric patterns for wall surfaces and vaulting, is reproduced entirely in color in this elegant, large-format volume. An extensive catalogue includes illustrations showing the underlying geometries (in the form of incised “dead” drawings) from which the individual patterns are generated. An essay by Mohammad al-Asad discusses the geometry of the muqarnas and demonstrates by means of CAD drawings how one of the scroll’s patterns could be used co design a three-dimensional vault.




Spatial Point Patterns


Book Description

Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th







Approaches to Algebra


Book Description

In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.




Mining of Massive Datasets


Book Description

Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.




The Crest of the Peacock


Book Description