Geometry of Design


Book Description

This work takes a close look at a broad range of 20th-century examples of design, architecture and illustration, revealing underlying geometric structures in their compositions.




Geometry of Design, Revised and Updated


Book Description

At last, a mathematical explanation of how art works presented in a manner we can all understand. Kimberly Elam takes the reader on a geometrical journey, lending insight and coherence to the design process by exploring the visual relationships that have foundations in mathematics as well as the essential qualities of life. Geometry of Design takes a close look at a broad range of twentieth-century examples of design, architecture, and illustration (from the Barcelona chair to the paintings of Georges Seurat, from the Braun hand blender to the Conico kettle), revealing underlying geometric structures in their compositions. Explanations and techniques of visual analysis make the inherent mathematical relationships evident and a must-have for anyone involved in art, design, or architecture graphic arts. The book focuses not only on the classic systems of proportioning, such as the golden section and root rectangles, but also on less well known proportioning systems such as the Fibonacci Series. Through detailed diagrams these geometric systems are brought to life giving an effective insight into the design process.




Grid Systems


Book Description

Although grid systems are the foundation for almost all typographic design, they are often associated with rigid, formulaic solutions. However, the belief that all great design is nonetheless based on grid systems (even if only subverted ones) suggests that few designers truly understand the complexities and potential riches of grid composition.




The Kinematic Geometry of Gearing


Book Description

Describing a dynamic new approach to the design, manufacture and evaluation of gears, The Kinematic Geometry of Gearing is an indispensable tool of the trade for gear and power transmission engineers and tribologists. It presents an entirely new and comprehensive methodology for the design and manufacture of virtually all types of toothed bodies for general function transmission. The authors develop, from first principles, the kinematic relationships necessary to design and manufacture circular and non-circular gears and other contact-type motion/force transmission mechanisms. They also demonstrate--with the help of the enclosed software--how the user specifications can be implemented in an interactive PC environment such that gear pairs and cutter pairs can be designed concurrently. The revolutionary approach outlined by Professors Dooner and Seireg is based on mathematical derivations from various theories of kinematic geometry, especially the screw theory. This approach arms engineers and tribologists with a powerful new tool for enhancing the performance of conventional gears mounted on parallel or non-parallel axes. Furthermore, it has been proven capable of greatly facilitating the design and manufacture of new devices, revealing heretofore unexplained phenomena which currently hinder the advancement of the gearing art beyond application to constant speed transmission. It also provides a means of developing and manufacturing tools and gear forms which were previously difficult to conceptualize or implement. The Kinematic Geometry of Gearing is divided into three sections, with the first being devoted to introducing the basic concepts and various types of toothed motion/force transmission mechanisms. Part II builds upon those concepts to develop a comprehensive methodology that can be applied to the design and manufacture of various types of gears and motion function generators. Part III discusses the design procedure itself. The authors supply a number of simplified design formulas, and, with the help of numerous examples, they clearly illustrate the capabilities of this versatile new approach to the integrated, interactive CAD/CAM of gear pairs and their production process. This groundbreaking book presents an entirely new and comprehensive methodology for the design, manufacture and evaluation of gears and virtually all other types of toothed motion/force transmission mechanisms. In it, the authors develop the kinematic relationships necessary to design and manufacture gear pairs and, with the help of the enclosed software, demonstrate how those relationships can utilize the design specification in an interactive PC environment to produce the design and manufacturing information and performance characteristics concurrently. A powerful new tool for evaluating and enhancing the performance of gear pairs and dealing with previously unexplained phenomena * An evolutionary leap in the design and manufacture of gear pairs provides a method for developing and manufacturing tools and gear forms which were previously difficult to conceptualize or implement * Design formulas and numerous real-world examples clearly illustrate the capabilities of this versatile new approach * Enclosed disk demonstrates to designers how to implement the described method into a fully integrated CAD and CAM process




Geometry in Architecture


Book Description

"Geometry in Architecture, a revised edition of Pioneer Texas Buildings, juxtaposes the historic structures with works by twenty contemporary architects who are inspired by the pioneer tradition to show how seamlessly the basic geometries translate from one era to another. As in the earlier book, sketches and brief commentary by Clovis Heimsath explain how squares, triangles, and circles take shape in the cylindrical forms that comprise houses and other buildings. Then black and white photographs, the heart of the book, illustrate these geometric forms in historic and modern buildings."--BOOK JACKET.




Conceptual Spaces


Book Description

Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.




Knife Engineering


Book Description

An in-depth exploration of the effects of different steels, heat treatments, and edge geometries on knife performance. This book provides ratings for toughness, edge retention, and corrosion resistance for all of the popular knife steels. Micrographs of over 50 steels. Specific recommended heat treatments for each steel. And answers to questions like: 1) Does a thinner or thicker edge last longer? 2) What heat treatment leads to the best performance? 3) Are there performance benefits to forging blades? 4) Should I use stainless or carbon steel? All of these questions and more are answered by a metallurgist who grew up around the knife industry.




Universal Principles of Design, Revised and Updated


Book Description

Universal Principles of Design is the first comprehensive, cross-disciplinary encyclopedia of design.




Geometry and its Applications in Arts, Nature and Technology


Book Description

This book returns geometry to its natural habitats: the arts, nature and technology. Throughout the book, geometry comes alive as a tool to unlock the understanding of our world. Assuming only familiarity with high school mathematics, the book invites the reader to discover geometry through examples from biology, astronomy, architecture, design, photography, drawing, engineering and more. Lavishly illustrated with over 1200 figures, all of the geometric results are carefully derived from scratch, with topics from differential, projective and non-Euclidean geometry, as well as kinematics, introduced as the need arises. The mathematical results contained in the book range from very basic facts to recent results, and mathematical proofs are included although not necessary for comprehension. With its wide range of geometric applications, this self-contained volume demonstrates the ubiquity of geometry in our world, and may serve as a source of inspiration for architects, artists, designers, engineers, and natural scientists. This new edition has been completely revised and updated, with new topics and many new illustrations.




The Fractal Geometry of Nature


Book Description

Written in a style that is accessible to a wide audience, The Fractal Geometry of Nature inspired popular interest in this emerging field. Mandelbrot's unique style, and rich illustrations will inspire readers of all backgrounds.