GEOVAL '94


Book Description

On cover & title page: OECD documents: safety assessment of radioactive waste repositories







The Handbook of Groundwater Engineering


Book Description

A complete treatment of the theory and practice of groundwater engineering, The Handbook of Groundwater Engineering, Second Edition provides a current and detailed review of how to model the flow of water and the transport of contaminants both in the unsaturated and saturated zones, covers the production of groundwater and the remediation of contaminated groundwater.




Radiological Risk Assessment and Environmental Analysis


Book Description

A comprehensive book that explains methods used for estimating risk to people exposed to radioactive materials released to the environment by nuclear facilities or in an emergency such as a nuclear terrorist event.




Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications


Book Description

This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented.· Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow· Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media· Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models




Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant


Book Description

The Waste Isolation Pilot Plant (WIPP) is a deep underground mined facility for the disposal of transuranic waste resulting from the nation's defense program. Transuranic waste is defined as waste contaminated with transuranic radionuclides with half-life greater than 20 years and activity greater than 100 nanocuries per gram. The waste mainly consists of contaminated protective clothing, rags, old tools and equipment, pieces of dismantled buildings, chemical residues, and scrap materials. The total activity of the waste expected to be disposed at the WIPP is estimated to be approximately 7 million curies, including 12,900 kilograms of plutonium distributed throughout the waste in very dilute form. The WIPP is located near the community of Carlsbad, in southeastern New Mexico. The geological setting is a 600-meter thick, 250 million-year-old saltbed, the Salado Formation, lying 660 meters below the surface. The National Research Council (NRC) has been providing the U.S. Department of Energy (DOE) scientific and technical evaluations of the WIPP since 1978. The committee's task is twofold: (1) to identify technical issues that can be addressed to enhance confidence in the safe and long-term performance of the repository and (2) to identify opportunities for improving the National Transuranic (TRU) Program for waste management, especially with regard to the safety of workers and the public. This is the first full NRC report issued following the certification of the facility by the U.S. Environmental Protection Agency (EPA) on May 18, 1998. An interim report was issued by the committee in April 2000 and is reproduced in this report. The main findings and recommendations from the interim report have been incorporated into the body of this report. The overarching finding and recommendation of this report is that the activity that would best enhance confidence in the safe and long-term performance of the repository is to monitor critical performance parameters during the long pre-closure phase of repository operations (35 to possibly 100 years). Indeed, in the first 50 to 100 years the rates of important processes such as salt creep, brine inflow (if any), and microbial activity are predicted to be the highest and will be less significant later. The committee recommends that the results of the on-site monitoring program be used to improve the performance assessment for recertification purposes. These results will determine whether the need for a new performance assessment is warranted. For the National TRU Program, the committee finds that the DOE is implementing many of the recommendations of its interim report. It is important that the DOE continue its efforts to improve the packaging, characterization, and transportation of the transuranic waste.




Testing and Validation of Computer Simulation Models


Book Description

This must-read text/reference provides a practical guide to processes involved in the development and application of dynamic simulation models, covering a wide range of issues relating to testing, verification and validation. Illustrative example problems in continuous system simulation are presented throughout the book, supported by extended case studies from a number of interdisciplinary applications. Topics and features: provides an emphasis on practical issues of model quality and validation, along with questions concerning the management of simulation models, the use of model libraries, and generic models; contains numerous step-by-step examples; presents detailed case studies, often with accompanying datasets; includes discussion of hybrid models, which involve a combination of continuous system and discrete-event descriptions; examines experimental modeling approaches that involve system identification and parameter estimation; offers supplementary material at an associated website.




Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste


Book Description

Geological disposal has been internationally adopted as the most effective approach to assure the long-term, safe disposition of the used nuclear fuels and radioactive waste materials produced from nuclear power generation, nuclear weapons programs, medical, treatments, and industrial applications. Geological repository systems take advantage of natural geological barriers augmented with engineered barrier systems to isolate these radioactive materials from the environment and from future populations.Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste critically reviews the state-of-the-art technologies, scientific methods, regulatory developments, and social engagement approaches directly related to the implementation of geological repository systems.Part one introduces geological disposal, including multiple-barrier geological repositories, as well as reviewing the impact of nuclear fuel recycling practices and underground research laboratory activities on the development of disposal concepts. Part two reviews geological repository siting in different host rocks, including long-term stability analysis and radionuclide transport modelling. Reviews of the range of engineered barrier systems, including waste immobilisation technologies, container materials, low pH concretes, clay-based buffer and backfill materials, and barrier performance are presented in Part three. Part four examines total system performance assessment and safety analyses for deep geological and near-surface disposal, with coverage of uncertainty analysis, use of expert judgement for decision making, and development and use of knowledge management systems. Finally, Part five covers regulatory and social approaches for the establishment of geological disposal programs, from the development of radiation standards and risk-informed, performance-based regulations, to environmental monitoring and social engagement in the siting and operation of repositories.With its distinguished international team of contributors, Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste is a standard reference for all nuclear waste management and geological repository professionals and researchers. - Critically reviews the state-of-the-art technologies, scientific methods, regulatory developments, and social engagement approaches related to the implementation of geological repository systems - Chapters introduce geological disposal and review the development of disposal concepts - Examines long-term stability analysis, the range of engineered barrier systems and barrier performance




High Level Radioactive Waste Management


Book Description

This collection contains 178 papers on the technical and societal impacts of high-level radioactive waste presented at the Seventh Annual International Conference on High Level Radioactive Waste Management, held in Las Vegas, Nevada, April 29-May 3, 1996.




Quantitative Environmental Risk Analysis for Human Health


Book Description

QUANTITATIVE ENVIRONMENTAL RISK ANALYSIS FOR HUMAN HEALTH An updated edition of the foundational guide to environmental risk analysis Environmental risk analysis is a systematic process essential for the evaluation, management, and communication of the human health risk posed by the release of contaminants to the environment. Performed correctly, risk analysis is an essential tool in the protection of the public from the health hazards posed by chemical and radioactive contaminants. Cultivating the quantitative skills required to perform risk analysis competently is a critical need. Quantitative Environmental Risk Analysis for Human Health meets this need with a thorough, comprehensive coverage of the fundamental knowledge necessary to assess environmental impacts on human health. It introduces readers to a robust methodology for analyzing environmental risk, as well as to the fundamental principles of uncertainty analysis and the pertinent environmental regulations. Now updated to reflect the latest research and new cutting-edge methodologies, this is an essential contribution to the practice of environmental risk analysis. Readers of the second edition of Quantitative Environmental Risk Analysis for Human Health will also find: Detailed treatment of source and release characterization, contaminant migration, exposure assessment, and more New coverage of computer-based analytical methods A new chapter of case studies providing actual, real-world examples of environmental risk assessments Quantitative Environmental Risk Analysis for Human Health is must-have for graduate and advanced undergraduate students in civil engineering, environmental engineering, and environmental science, as well as for risk analysis practitioners in industry, environmental consultants, and regulators.