GLSL Essentials


Book Description

This book is a practical guide to the OpenGL Shading Language, which contains several real-world examples that will allow you to grasp the core concepts easily and the use of the GLSL for graphics rendering applications. If you want upgrade your skills, or are new to shader programming and want to learn about graphic programming, this book is for you. If you want a clearer idea of shader programming, or simply want to upgrade from fixed pipeline systems to state-of-the-art shader programming and are familiar with any C-based language, then this book will show you what you need to know.




GLSL Essentials


Book Description

This book is a practical guide to the OpenGL Shading Language, which contains several real-world examples that will allow you to grasp the core concepts easily and the use of the GLSL for graphics rendering applications.If you want upgrade your skills, or are new to shader programming and want to learn about graphic programming, this book is for you. If you want a clearer idea of shader programming, or simply want to upgrade from fixed pipeline systems to state-of-the-art shader programming and are familiar with any C-based language, then this book will show you what you need to know.




OpenGL Insights


Book Description

Get Real-World Insight from Experienced Professionals in the OpenGL Community With OpenGL, OpenGL ES, and WebGL, real-time rendering is becoming available everywhere, from AAA games to mobile phones to web pages. Assembling contributions from experienced developers, vendors, researchers, and educators, OpenGL Insights presents real-world techniques for intermediate and advanced OpenGL, OpenGL ES, and WebGL developers. Go Beyond the Basics The book thoroughly covers a range of topics, including OpenGL 4.2 and recent extensions. It explains how to optimize for mobile devices, explores the design of WebGL libraries, and discusses OpenGL in the classroom. The contributors also examine asynchronous buffer and texture transfers, performance state tracking, and programmable vertex pulling. Sharpen Your Skills Focusing on current and emerging techniques for the OpenGL family of APIs, this book demonstrates the breadth and depth of OpenGL. Readers will gain practical skills to solve problems related to performance, rendering, profiling, framework design, and more.




OpenGL Programming Guide


Book Description

Explaining how graphics programs using Release 1.1, the latest release of OpenGL, this book presents the overall structure of OpenGL and discusses in detail every OpenGL feature including the new features introduced in Release 1.1. Numerous programming examples in C show how to use OpenGL functions. Also includes 16 pages of full-color examples.




OpenGL Shading Language


Book Description

"As the 'Red Book' is known to be the gold standard for OpenGL, the 'Orange Book' is considered to be the gold standard for the OpenGL Shading Language. With Randi's extensive knowledge of OpenGL and GLSL, you can be assured you will be learning from a graphics industry veteran. Within the pages of the second edition you can find topics from beginning shader development to advanced topics such as the spherical harmonic lighting model and more." —David Tommeraasen, CEO/Programmer, Plasma Software "This will be the definitive guide for OpenGL shaders; no other book goes into this detail. Rost has done an excellent job at setting the stage for shader development, what the purpose is, how to do it, and how it all fits together. The book includes great examples and details, and good additional coverage of 2.0 changes!" —Jeffery Galinovsky, Director of Emerging Market Platform Development, Intel Corporation "The coverage in this new edition of the book is pitched just right to help many new shader-writers get started, but with enough deep information for the 'old hands.'" —Marc Olano, Assistant Professor, University of Maryland "This is a really great book on GLSL—well written and organized, very accessible, and with good real-world examples and sample code. The topics flow naturally and easily, explanatory code fragments are inserted in very logical places to illustrate concepts, and all in all, this book makes an excellent tutorial as well as a reference." —John Carey, Chief Technology Officer, C.O.R.E. Feature Animation OpenGL® Shading Language, Second Edition, extensively updated for OpenGL 2.0, is the experienced application programmer's guide to writing shaders. Part reference, part tutorial, this book thoroughly explains the shift from fixed-functionality graphics hardware to the new era of programmable graphics hardware and the additions to the OpenGL API that support this programmability. With OpenGL and shaders written in the OpenGL Shading Language, applications can perform better, achieving stunning graphics effects by using the capabilities of both the visual processing unit and the central processing unit. In this book, you will find a detailed introduction to the OpenGL Shading Language (GLSL) and the new OpenGL function calls that support it. The text begins by describing the syntax and semantics of this high-level programming language. Once this foundation has been established, the book explores the creation and manipulation of shaders using new OpenGL function calls. OpenGL® Shading Language, Second Edition, includes updated descriptions for the language and all the GLSL entry points added to OpenGL 2.0; new chapters that discuss lighting, shadows, and surface characteristics; and an under-the-hood look at the implementation of RealWorldz, the most ambitious GLSL application to date. The second edition also features 18 extensive new examples of shaders and their underlying algorithms, including Image-based lighting Lighting with spherical harmonics Ambient occlusion Shadow mapping Volume shadows using deferred lighting Ward's BRDF model The color plate section illustrates the power and sophistication of the OpenGL Shading Language. The API Function Reference at the end of the book is an excellent guide to the API entry points that support the OpenGL Shading Language. Also included is a convenient Quick Reference Card to GLSL.




OpenGL ES 3.0 Programming Guide


Book Description

OpenGL ® ES TM is the industry’s leading software interface and graphics library for rendering sophisticated 3D graphics on handheld and embedded devices. The newest version, OpenGL ES 3.0, makes it possible to create stunning visuals for new games and apps, without compromising device performance or battery life. In the OpenGL® ESTM 3.0 Programming Guide, Second Edition, the authors cover the entire API and Shading Language. They carefully introduce OpenGL ES 3.0 features such as shadow mapping, instancing, multiple render targets, uniform buffer objects, texture compression, program binaries, and transform feedback. Through detailed, downloadable C-based code examples, you’ll learn how to set up and program every aspect of the graphics pipeline. Step by step, you’ll move from introductory techniques all the way to advanced per-pixel lighting and particle systems. Throughout, you’ll find cutting-edge tips for optimizing performance, maximizing efficiency with both the API and hardware, and fully leveraging OpenGL ES 3.0 in a wide spectrum of applications. All code has been built and tested on iOS 7, Android 4.3, Windows (OpenGL ES 3.0 Emulation), and Ubuntu Linux, and the authors demonstrate how to build OpenGL ES code for each platform. Coverage includes EGL API: communicating with the native windowing system, choosing configurations, and creating rendering contexts and surfaces Shaders: creating and attaching shader objects; compiling shaders; checking for compile errors; creating, linking, and querying program objects; and using source shaders and program binaries OpenGL ES Shading Language: variables, types, constructors, structures, arrays, attributes, uniform blocks, I/O variables, precision qualifiers, and invariance Geometry, vertices, and primitives: inputting geometry into the pipeline, and assembling it into primitives 2D/3D, Cubemap, Array texturing: creation, loading, and rendering; texture wrap modes, filtering, and formats; compressed textures, sampler objects, immutable textures, pixel unpack buffer objects, and mipmapping Fragment shaders: multitexturing, fog, alpha test, and user clip planes Fragment operations: scissor, stencil, and depth tests; multisampling, blending, and dithering Framebuffer objects: rendering to offscreen surfaces for advanced effects Advanced rendering: per-pixel lighting, environment mapping, particle systems, image post-processing, procedural textures, shadow mapping, terrain, and projective texturing Sync objects and fences: synchronizing within host application and GPU execution This edition of the book includes a color insert of the OpenGL ES 3.0 API and OpenGL ES Shading Language 3.0 Reference Cards created by Khronos. The reference cards contain a complete list of all of the functions in OpenGL ES 3.0 along with all of the types, operators, qualifiers, built-ins, and functions in the OpenGL ES Shading Language.




Graphics Shaders


Book Description

Graphics Shaders: Theory and Practice is intended for a second course in computer graphics at the undergraduate or graduate level, introducing shader programming in general, but focusing on the GLSL shading language. While teaching how to write programmable shaders, the authors also teach and reinforce the fundamentals of computer graphics. The sec




Learn OpenGL


Book Description

Learn OpenGL will teach you the basics, the intermediate, and tons of advanced knowledge, using modern (core-profile) OpenGL. The aim of this book is to show you all there is to modern OpenGL in an easy-to-understand fashion, with clear examples and step-by-step instructions, while also providing a useful reference for later studies.




OpenGL Programming Guide


Book Description

Includes Complete Coverage of the OpenGL® Shading Language! Today’s OpenGL software interface enables programmers to produce extraordinarily high-quality computer-generated images and interactive applications using 2D and 3D objects, color images, and programmable shaders. OpenGL® Programming Guide: The Official Guide to Learning OpenGL®, Version 4.3, Eighth Edition, has been almost completely rewritten and provides definitive, comprehensive information on OpenGL and the OpenGL Shading Language. This edition of the best-selling “Red Book” describes the features through OpenGL version 4.3. It also includes updated information and techniques formerly covered in OpenGL® Shading Language (the “Orange Book”). For the first time, this guide completely integrates shader techniques, alongside classic, functioncentric techniques. Extensive new text and code are presented, demonstrating the latest in OpenGL programming techniques. OpenGL® Programming Guide, Eighth Edition, provides clear explanations of OpenGL functionality and techniques, including processing geometric objects with vertex, tessellation, and geometry shaders using geometric transformations and viewing matrices; working with pixels and texture maps through fragment shaders; and advanced data techniques using framebuffer objects and compute shaders. New OpenGL features covered in this edition include Best practices and sample code for taking full advantage of shaders and the entire shading pipeline (including geometry and tessellation shaders) Integration of general computation into the rendering pipeline via compute shaders Techniques for binding multiple shader programs at once during application execution Latest GLSL features for doing advanced shading techniques Additional new techniques for optimizing graphics program performance




Graphics Shaders


Book Description

Programmable graphics shaders, programs that can be downloaded to a graphics processor (GPU) to carry out operations outside the fixed-function pipeline of earlier standards, have become a key feature of computer graphics. This book is designed to open computer graphics shader programming to the student, whether in a traditional class or on their own. It is intended to complement texts based on fixed-function graphics APIs, specifically OpenGL. It introduces shader programming in general, and specifically the GLSL shader language. It also introduces a flexible, easy-to-use tool, glman, that helps you develop, test, and tune shaders outside an application that would use them.