Gold Nanoparticles For Physics, Chemistry And Biology (Second Edition)


Book Description

Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal the growing impact of plasmonics in research, with an introduction to quantum plasmonics, plasmon assisted catalysis and electro-photon conversion. The growing field of nanoparticles for health is also addressed with a study of gold nanoparticles as radiosensibiliser for radiotherapy, and of gold nanoparticle functionalisation. This new edition also considers the relevance of bimetallic nanoparticles for specific applications.World-class scientists provide the most up-to-date findings for an introduction to gold nanoparticles within the related areas of chemistry, biology, material science, optics and physics. It is perfectly suited to advanced level students and researchers looking to enhance their knowledge in the study of gold nanoparticles.




Gold Nanoparticles


Book Description

Due to their attractive electronic, optical, and thermal properties; gold nanoparticles (AuNPs) have emerged with great interest, as well as catalytic properties, in the fields of physics, chemistry, biology, medicine, material science and some interdisciplinary fields. This book examines a broad range of applications of gold nanoparticles such as: gold nanoparticles as an antigen carrier and as an adjuvant; laser synthesis of gold nanoparticles and the control over their properties; gold on carbon catalysts; gold nanoparticles as a delivery vehicle in biomedical applications; solution and solid-state methods to prepare Au nanoparticles; gold nanoparticles and their in-vitro property, the usefulness of gold nanoparticles in emerging infectious disease situations and a host of others.




Gold Nanoparticles


Book Description

Gold nanoparticles provide a platform for the development of new and efficient diagnostic and therapeutic tools.This book offers a general guide to the synthesis and coating of gold nanoparticles. It describes the links between optical features and geometries of gold nanoparticles and provides a readily comprehensible connection in all the chapters between the geometry of gold nanoparticles and their final applications.




Gold Nanoparticles for Drug Delivery


Book Description

Gold Nanoparticles for Drug Delivery discusses the synthesis and characterization of gold nanoparticles (AuNPs), presenting an historical introduction to the developments in the area, discussing methods and characterization parameters, covering targeted delivery strategies, treatment of cancer, CNS conditions, infectious diseases, HIV/AIDS infection, wound healing and tissue regeneration, dentistry, gene delivery, and its photo properties used in diagnostic and therapies, and finally presenting regulatory aspects such as theranostic applications, vaccine development, toxicity, and the translation of research to marketable products. This book is a complete reference for researchers in nanotechnology drug delivery and pharmaceutical disciplines. Researchers in pharmaceutical industries, especially those involved in the use of gold nanoparticles in the field of drug delivery, diagnosis, targeted and early therapies will also benefit from this book. - Covers gold nanoparticles' characterization and synthesis techniques related to drug delivery - Focuses on targeting strategies using gold nanoparticles for efficient drug delivery - Provides a consolidated overview of applications of gold nanoparticles for drug delivery to several systems and conditions




Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces


Book Description

This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, Chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field.




Gold Nanoparticles in Biomedical Applications


Book Description

This book discusses fabrication of functionalized gold nanoparticles (GNPs) and multifunctional nanocomposites, their optical properties, and applications in biological studies. This is the very first book of its kind to comprehensively discuss published data on in vitro and in vivo biodistribution, toxicity, and uptake of GNP by mammalian cells providing a systematization of data over the GNP types and parameters, their surface functionalization, animal and cell models. As distinct from other related books, Gold Nanoparticles in Biomedical Applications discusses the immunological properties of GNPs and summarizes their applications as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. Although the potential of GNPs in nanobiotechnology has been recognized for the past decade, new insights into the unique properties of multifunctional nanostructures have recently emerged. With these developments in mind, this book unites ground breaking experimental data with a discussion of hybrid nanoparticle systems that combine different nanomaterials to create multifunctional structures. These novel hybrids constitute the material basis of theranostics, bringing together the advanced properties of functionalized GNPs and composites into a single multifunctional nanostructure with simultaneous diagnostic and therapeutic functions. Such nanohybrids can be physically and chemically tailored for a particular organ, disease, and patient thus making personalized medicine available.




Gold Nanoparticles


Book Description

In this book, the authors present current research in the study of the synthesis, optical properties and applications for cancer treatment of gold nanoparticles. Topics discussed include the use of gold nanoparticles in cancer treatment and biomedical applications to target tumors and provide detection, drug carriers, gene silencing and radiotherapy; gold nanoparticle fabrication by laser ablation technique and their optical and morphological study; gold nanoparticles for metabolite imaging; formation of gold nanoparticles inside the corona of amphiphilic triblock copolymer micelles; and the intracellular delivery of gold nanoparticles and their application in nanomedicine.




Bio-Applications of Nanoparticles


Book Description

This edited book highlights the central players in the Bionanotechnology field - which are the nanostructures and biomolecules. It provides broad examples of current developments in Bionanotechnology research and is an excellent introduction to the field. The book describes how nanostructures are synthesized and details the wide variety of nanostructures available for biological research and applications. Examples of the unique properties of nanostructures are provided along with the current applications of these nanostructures in biology and medicine. The final chapters of the book describe the toxicity of nanostructures.




Catalysis By Gold


Book Description

Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing gold catalysts and ways to characterise and use them effectively in reactions. The reaction mechanisms and reasons for the high activities are discussed and the applications for gold catalysis considered./a




Gold Clusters, Colloids and Nanoparticles I


Book Description

The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.